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Abstract
We present sketching algorithms for sparse binary datasets, which maintain binary version
of the dataset after sketching, while simultaneously preserving multiple similarity measures
such as Jaccard Similarity, Cosine Similarity, Inner Product, and Hamming Distance, on the
same sketch. A major advantage of our algorithms is that they are randomness efficient, and
require significantly less number of random bits for sketching – logarithmic in dimension,
while other competitive algorithms require linear in dimension. Our proposed algorithms
are efficient, offer a compact sketch of the dataset, and can be efficiently deployed in a
distributive setting. We present a theoretical analysis of our approach and complement them
with extensive experimentations on public datasets. For analysis purposes, our algorithms
require a natural assumption on the dataset. We empirically verify the assumption and
notice that it holds on several real-world datasets.
Keywords: Feature Hashing, Binary Data, Cosine Similarity, Jaccard Similarity.

1. Introduction

Due to the recent technological advancements in the areas of the WWW, IOT, cloud, etc.,
such applications generate a large volume of high dimensional data. For example, in many
web applications, the dimension of the datasets are of the order of billions (Agarwal et al.,
2014). Further, most of such high dimensional datasets are sparse and binary, owing to
a wide adaption of “Bag-of-words" (BoW) representations. For example: in the case of
document representation, word frequency within a document follows power law – most of the
words occur rarely in a document, and higher order shingles occur only once. Sparse binary
representation of datasets in large scale systems is also quite common in several industrial
applications (Chandra et al.).

Computing the similarity score of data points under various similarity measures is a
fundamental subroutine in several applications such as clustering, classification, identifying
nearest neighbors, ranking. However, due to the “curse of dimensionality" a brute-force way
of computing the similarity scores in the high dimensional dataset is infeasible, and at times
impossible. In this work, we focus on deriving an efficient feature-hashing algorithm for
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sparse binary datasets that can generate a succinct sketch of the dataset while preserving
the similarity between data objects.

Important observation pertaining to feature hashing for sparse binary data.
Given a pair of ψ-sparse (number of 1’s in each vector is at most ψ) binary vectors, there are
at most 2ψ interesting (indices having non-zero values) bit positions. If a hashing algorithm
can isolate those indices into different buckets, then the similarities between original vectors
are also preserved in the compressed version. This observation was originally noted in (Pratap
et al., 2018a,b), that suggests a randomized bucketing algorithm, where each index of the
input is randomly assigned to one of the O(ψ2) buckets. The sketch of an input vector is
obtained by computing the parity of the bits fallen in each bucket.

Why saving on the randomness is important: We argue that randomness is a key
resource needed for the computation along with running time and memory. Most of the
feature hashing algorithms are randomized and require random bits for generating hash
functions. Generation of random bits is a computationally expensive task. Our work focuses
on saving the random bits required for the computation. We would like to emphasize that
most state-of-the-art feature hashing algorithms require a large number of random bits,
which is linear in the dimension of the dataset, making them impractical in the case of
high dimensional datasets. The number of random bits required by our algorithms grows
logarithmically in d, and offers a huge saving.

1.1. Our Contribution

We propose a randomness efficient feature hashing algorithm – PivotHash– for sparse binary
datasets. We start by stating a couple of the following definitions.

Definition 1. Consider a d-dimensional binary vector u ∈ {0, 1}d. We call an index i of u
a non-zero index if u[i] = 1. We call a binary vector u, a ψ-sparse vector, if the number of
non-zero indices in u is at most ψ.

Definition 2. Consider a ψ-sparse, d-dimensional binary vector u ∈ {0, 1}d. We call a pair
of indices {i, j} of u “well-spread” if |i− j| = Ω(d/ψ). We call a vector u well-spread if every
pair of its non-zero indices is well-spread. Similarly, we call a binary dataset well-spread if
each of its vectors is well-spread.

Please note that for a ψ-sparse dataset, the number of candidate pairs (of non-zero indices)
for well-spread is (ψ−1). We argue that the notion of well-spreadness is a natural assumption
for most of the sparse, binary, high-dimensional, and real-world datasets. For example, in the
case of text dataset while creating a BoW model, by choosing a hash function – which maps
words to the indices from 1 to d uniformly at random – the notion of well-spreadness can be
satisfied, with high probability. We statistically verify the assumption on several real-world
datasets and observed that almost all pair of non-zero indices satisfies the assumption. We
discuss this detail in Section 4. For a pair of sparse and well spread binary vectors, our
proposed algorithm PivotHash (see Subsection 3.1 for the Algorithm) offers the following
guarantee.

Theorem 3. Let u,v ∈ {0, 1}d be a pair of ψ-sparse and well-spread vectors. If we set the
number of pivots k = O(ψ logψ), and compress them into binary vectors u′,v′ ∈ {0, 1}N via
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Table 1: A comparison among the candidate algorithms, on the number of random bits
and the compression time, to get a sketch of length N of a single data object.
Compression time includes both (i) time required to generate hash function, which
is of order the number of random bits, (ii) time required to generate the sketch
using the hash functions. ψ is the sparsity of the dataset.

Algorithm No of random bits Compression time
This work O(ψ logψ log d) O(ψ logψ log d+ ψ)

BCS (Pratap et al., 2018a,b) O(d log N) O(d log N + ψ)
DOPH (Shrivastava, 2017) O(d log d) O(d log d+ ψ + N)

CBE (Yu et al., 2014) O(d) O(d log d)
SimHash (Charikar, 2002) O(dN) O((d+ ψ)N)

MinHash (Broder et al., 1998) O((d log d)N) O((d log d+ ψ)N)

PivotHash, where N ≤ 2k, then with a constant probability the values of Jaccard Similarity,
Cosine Similarity, Inner Product, and Hamming Distance between u′,v′ are same as of their
corresponding values between u,v.

The following theorem comments on the number of random bits required by PivotHash,
and the subsequent remark quantifies this with respect to the other state-of-the-art algorithms,
which provide a similar guarantee as of Theorem 3.

Theorem 4. The number of random bits required by PivotHash in order to satisfy the
guarantee offered by Theorem 3 is O(ψ logψ log d).

For Jaccard Similarity, we compare the performance of our algorithms with MinHash (Broder
et al., 1998), DOPH (Shrivastava, 2017), and BCS (Pratap et al., 2018b), and for Cosine
Similarity, we compare it with SimHash (Charikar, 2002), CBE (Yu et al., 2014), and
MinHash (Shrivastava and Li, 2015). In both the scenarios, for sparse binary datasets, our
proposed algorithm PivotHash suggests a faster algorithm, requires significantly less number
of random bits, while simultaneously offering almost a similar performance as compared to
the baselines. We summarise an asymptotic comparison among the baseline algorithms on
the number of random bits needed, and the compression time in Table 1. Further, an added
advantage with PivotHash is that it can be efficiently distributed (see Subsection 3.1).

1.2. Applicability of our results

In the case of high dimensional sparse binary datasets, our algorithms can be used to
improve the performance of numerous applications, which require Jaccard/Cosine/Hamming
Distance/Inner Product similarity preserving sketch. That is, in applications, where their
respective state-of-the-art sketching algorithms MinHash, SimHash, BCS (Pratap et al.,
2018b,a) Asymmetric MinHash (Shrivastava and Li, 2015) are in use.

Scalable Ranking and deduplication of documents. Given a corpus of documents
and a set of query documents, the task is to rank all documents in the corpus that are
similar (under the given similarity measures like Jaccard, Cosine, Inner Product) to the
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query documents. This problem is a fundamental sub-routine in many applications like near-
duplicate data detection (Sood and Loguinov, 2011; Henzinger, 2006; Broder, 2000), efficient
document similarity search (Jiang and Sun, 2011; Shrivastava and Li, 2015) plagiarism
detection (Buyrukbilen and Bakiras, 2013; Broder, 2000). In Subsection 4.2, we provide
empirical validations through a set of experiments that our proposed algorithms are efficient
both in terms of space and time while maintaining almost a similar accuracy.

Scalable Clustering of documents. For high-dimensional and sparse binary datasets,
our proposed algorithms can be used in scaling up the performance of several clustering
algorithms by offering a succinct and accurate sketch of the original dataset. For example:
in the case of Spherical k-means (Dhillon and Modha, 2001), which is a popular choice of
clustering text documents using Cosine Similarity; and k-mode (Huang, 1998) clustering
algorithm which is used for clustering binary dataset using Hamming Distance.

Other Applications. Apart from the above-mentioned applications, sketching techniques
have been widely used in applications like compressing social networks (Chierichetti et al.,
2009), all pair similarity (Bayardo et al., 2007). Our proposed methods can be used to scale
up the performance of the respective algorithms by offering a randomness efficient, succinct,
and accurate sketch.

2. Background

Notations
N dimension of the compressed data.
ψ upper bound on the number of 1’s in binary vectors.
k number of sampled pivots for PivotHash.
u[i] i-th bit position of binary vector u.
|u| number of 1’s in the binary vector u.

cos(u,v) Cosine Similarity between u and v.

JS(u,v) Jaccard Similarity between u and v.

dH(u,v) Hamming Distance between u and v.

〈u,v〉 Inner Product between u and v.

SimHash – a sketching algorithm for Cosine Similarity (Charikar, 2002; Goemans
and Williamson, 1995). The Cosine Similarity between a pair of vectors u,v ∈ Rd is
defined as 〈u,v〉/||u||2||v||2. To compute a sketch of the vector u, SimHash (Charikar, 2002)
generates a random vector r ∈ {−1,+1}d, with each component generated from {−1,+1}
with probability 1/2, and only stores the sign of the projected data. That is,

SimHash(r)(u) =

{
1, if 〈u, r〉 ≥ 0.

0, otherwise.

It was shown in (Goemans and Williamson, 1995) that SimHash offers the following guarantee

Pr[SimHash(r)(u) = SimHash(r)(v)] = 1− θ

π
, where θ = cos−1 (〈u,v〉/||u||2||v||2) .
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MinHash – a sketching algorithm for Jaccard Similarity (Broder et al., 1998).The
Jaccard Similarity between a pair of set u,v ⊆ {1, 2, . . . d} is defined as JS(u,v) = |u∩v|

|u∪v| .

(Broder et al., 1998) suggested an algorithm – MinHash – to compress a collection of sets
while preserving the Jaccard Similarity between any pair of sets.

Definition 5 (Minhash (Broder et al., 1998)). Let π be a random permutation over {1, . . . , d},
then for a set u ⊆ {1, . . . d} hπ(u) = arg mini π(i) for i ∈ u. Then, Pr[hπ(u) = hπ(v)] =
|u∩v|
|u∪v| .

BCS – a sketching algorithm for sparse binary datasets (Pratap et al., 2018b,a).
For a sparse binary dataset, BCS offers a sketching algorithm which simultaneously preserves
Jaccard Similarity, Hamming Distance and Inner Product. We formally define BCS as follows:

Definition 6 (BCS). Let N be the number of buckets, for i = 1 to d, we randomly assign
the i-th position to a bucket number b(i) ∈ {1, . . .N}. Then a vector u ∈ {0, 1}d, compressed
into a vector u′ ∈ {0, 1}N as follows: u′[j] =

∑
i:b(i)=j u[i] (mod 2).

3. Detailed Results

3.1. PivotHash Details

For a sparse and well-spread binary dataset, we present our algorithm PivotHash as follows.
Given a d-dimensional binary dataset, our aim is to come up with a hash function H(.) that
maps an index i ∈ {1 . . . d} to the id (signature) of the bucket. We obtain it via a two-step
procedure, and then use these signatures for sketching binary vectors in Step 3.
Step 1: We first sample k pivots, p1, . . . , pk, where each pj is chosen u.a.r. from 1 to d,
where the value of k is decided later on.
Step 2: Based on the sampled pivots p1, .., pk, we define k hash functions hp1(.), .., hpk(.) as
follows:

hpj (i) =

{
0, if dcyc(i, pj) < d/2.

1, otherwise.

Where,

dcyc(a, b) =

{
a− b, if b ≤ a.
d+ a− b− 1, otherwise.

The mapping H(.) is obtained by concatenating hp1(.), . . . , hpk(.). Further, we describe how
the mapping H(.) is used for compressing a given binary vector u ∈ {0, 1}d to a binary vector
u ∈ {0, 1}N, where N is the number of buckets with distinct bucket ids.
Step 3: Let x denote an integer corresponding to the k bit binary vector obtained from
H(i). Then

u′[x] =
∑

i:H(i)=x

u[i] (mod 2).

We summarized all the steps of PivotHash in Figure 1. In PivotHash, each of the sampled
pivots hash indices with respect to their given order, and due to that, it could generate at
most 2k distinct k-bit binary strings. We summarize this in the following Observation.

693



Pratap∗ Revanuru∗ Ravi Kulkarni

Figure 1: An illustration of PivotHash on an 8-dimensional dataset, with the sampled pivots
p1 = 1 and p2 = 3. The clockwise cyclic distance between p1 and the indices
1, 2, 3, 4 is less than 4, therefore they are hashed to 0, and the remaining indices
are hashed to 1. Similarly, p2 hashes the indices 3, 4, 5, 6 to 0 and the remaining
to 1. After concatenation of these two hash values, four distinct bucket ids are
generated. Each index is mapped to one of these buckets. Finally, a binary vector
is compressed by taking the parity of bits fallen in each bucket.

Observation 7. Consider a d-dimensional binary dataset. If we randomly sample k pivots
from indices ∈ {1, .., d} via PivotHash, then the number of buckets with distinct signatures is
at most 2k.

For a sparse and well-spread dataset, PivotHash offers the following guarantee.

Theorem 8. Let u be a ψ-sparse and well-spread vector. If we set k = 4ψ logψ in PivotHash,
then with probability at least 1− 1/e4 hash values of every pair of the non-zero indices of u
are different.

Proof Consider a pair of non-zero indices {i, j} of the vector u. The probability that the hash
values of these indices under the first sampled pivot are different is equal to (2|i− j| − 2)/d.
The probability that the hash values of these indices under the first sampled pivot are same
is equal to 1− (2|i− j| − 2)/d. Further, as the vector u is well-spread, |i− j| = Ω(d/ψ), then
the above probability is at most 1− 2c/ψ + 2/d, where c is some constant with c > 2. As
d ≥ ψ, which implies 2/d ≤ 2/ψ, therefore the above probability is at most 1− 2(c− 1)/ψ,
which is at most 1− 2/ψ. Further, probability that hash values of {i, j} by all of the first k
sampled pivots are same is at most (1− 2/ψ)k. If we set k = 4ψ logψ the above probability
is at most 1/(ψ2e4). A proof of the theorem holds due to the probability union bound on the
ψ2 pairs of non-zero indices.

Theorem 8 along with Observation 7 suggest the following.

Corollary 9. Let u,v ∈ {0, 1}d be a pair of ψ-sparse and well-spread vectors. If we set
k = 8ψ logψ, and compress them into binary vectors u′,v′ ∈ {0, 1}N via PivotHash, where
N ≤ 2k. Then each of the following holds true with a constant probability (a) dH(u,v) =
dH(u′,v′), (b) 〈u,v〉 = 〈u′,v′〉.
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For a pair of binary vectors, the following proposition relates Jaccard Similarity with
Hamming Distance and Inner Product.

Proposition 10. Let u,v ∈ {0, 1}d. Then, we have JS(u,v) = 〈u,v〉
(〈u,v〉+dH(u,v)) .

As a result of Corollary 9 and Proposition 10, PivotHash compression preserves Jaccard
Similarity.

Corollary 11. Let u,v ∈ {0, 1}d be a pair of ψ-sparse and well-spread vectors. If we set
k = 8ψ logψ, and compress them into binary vectors u′,v′ ∈ {0, 1}N using PivotHash, where
N ≤ 2k. Then with a constant probability we have, JS(u,v) = JS(u′,v′).

As a result of Theorem 8 and Corollary 9, PivotHash compression preserves Cosine
Similarity.

Corollary 12. Let u,v ∈ {0, 1}d be a pair of ψ-sparse and well-spread vectors. If we set
k = 8ψ logψ, and compress them into binary vectors u′,v′ ∈ {0, 1}N via PivotHash, where
N ≤ 2k. Then with a constant probability we have, cos(u,v) = cos(u′,v′).

Proof of Theorem 3. Observation 7 and Corollaries 9,11,12 completes a proof of Theorem 3.
The following corollary extends the above results for a set of binary vectors.

Corollary 13. Consider a set U of binary vectors {ui}ni=1 ⊆ {0, 1}d, where each vector
{ui}ni=1 is ψ-sparse and well-spread. If we set k′ = O(ψ logψ log n), and compress them
into a set U′ of binary vectors {u′i}ni=1 ⊆ {0, 1}N via PivotHash, where N ≤ 2k′. Then
for all ui,uj ∈ U, each of the following is true with a constant probability (a) dH(ui,uj) =
dH(ui

′,uj
′); (b) 〈ui,uj〉 = 〈ui

′,uj
′〉; (c) JS(ui,uj) = JS(ui

′,uj
′); (d) cos(ui,uj) = cos(ui

′,uj
′).

PivotHash can be efficiently distributed. PivotHash can be easily deployed in a
distributed environment. To distribute the mapping, it is enough to share the sampled pivots,
which can be kept in the master-node, and it requires only O(ψ logψ log d) bits. All the
client-nodes can access these pivots from the master node, and can recover the mapping at
their end for compression. Therefore PivotHash suggests a succinct hash function which can
be shared efficiently, especially in a distributed setting.

Each sampled pivot in PivotHash performs the hashing on the given fixed ordering of
indices. We notice that if it is possible to generate an independent random permutation
of indices w.r.t. each sampled pivot, then a larger number of buckets can be generated,
which further helps in offering a more randomness efficient hashing. We made a step in
this direction by suggesting a heuristic – MaskHash – which generates an almost random
permutation of indices corresponding to each sampled pivot. We discuss it below.

3.2. Improving the performance of PivotHash.

PivotHash hashes the indices from 1 to d based on their fixed given ordering, and because
of that, it could generate at most 2k distinct buckets (Observation 7). We argue that for a
given value of k, generating a large number of buckets helps in saving on the randomness.
We discuss this as follows. If it is possible to generate a random and independent ordering of
indices for each pivot, then 2k distinct buckets can be generated, and indices from 1 to d will
be mapped uniformly across all 2k buckets. Therefore, due to (Pratap et al., 2018b),(Pratap
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et al., 2018a) if we set N = O(ψ2), which implies to choose k = O(logψ), then the guarantees
of similarity preserving compression similar to Corollaries 9,11,12 will hold. This would
result in a significant saving in terms of randomness which is k log d = logψ × log d, whereas
in the case of PivotHash it is O(ψ logψ log d). The above-suggested approach in principle
holds true. However, it is computationally expensive, as generating one independent random
permutation corresponding to each pivot requires O(d log d) random bits, which is infeasible
for large values of d.

Figure 2: Comparison of the number of distinct buckets vs the number of pivots between
PivotHash and MaskHash.

MaskHash. We attempt to replace the method discussed above with an efficient proxy
method – MaskHash. For each randomly sampled pivot pj , it generates a log d bit random
string – mask. Further, it generates an approximate random permutation of the indices, by
taking bitwise XOR between every index from 1 to d with the sampled mask.

With one random mask corresponding to each pivot, we can potentially hope to generate
more than 2k distinct buckets which requires O(k log d) random bits. We could not prove any
mathematical bound on the number of distinct buckets generated via MaskHash. However,
we experimentally validate that it indeed generates a larger number of buckets as compared
to PivotHash (see Figure 2), and as a consequence, offers somewhat better performance
compared to the PivotHash. We argue that MaskHash can be of independent interest
because it helps in generating proxies of random permutations. Therefore, it can help in
scaling up the algorithms/applications that require generating random permutations, e.g.
MinHash (Broder et al., 1998).

4. Experiments

Hardware description. We performed our experiments on a machine having the following
configuration: CPU: Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz x 4; Memory: 7.5 GB;
OS: Ubuntu 18.04; Model: Lenovo Thinkpad T430.

Datasets. The experiments were performed on publicly available datasets - namely, NY-
Times news articles (number of points = 300000, dimension = 102660), Enron Emails (number
of points = 39861, dimension = 28102), and KOS blog entries (number of points = 3430,
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dimension = 6906) from the UCI machine learning repository (Lichman, 2013); and BBC
News Datasets (number of points = 2225, dimension = 9635 ) (Greene and Cunningham,
2006). We considered the entire corpus of KOS and BBC News datasets, while for NYTimes,
ENRON datasets we took a sample of 5000 data points.

Competing Algorithms: For our experiments, we have used two similarity measures:
Jaccard Similarity and Cosine Similarity. For the Jaccard Similarity, MinHash (Broder
et al., 1998), Densified One Permutation Hashing (DOPH) – a faster variant of MinHash
– (Shrivastava, 2017), and BCS (Pratap et al., 2018b) were the competing algorithms. For
the Cosine Similarity, SimHash (Charikar, 2002), Circulant Binary Embedding (CBE) – a
faster variant of SimHash – (Yu et al., 2014), MinHash (Shrivastava and Li, 2014), and
DOPH (Shrivastava, 2017) on the sketch obtained by MinHash (Shrivastava and Li, 2014),
were the competing algorithms.

Figure 3: Empirical verification of well-spreadness assumption.

Empirically verifying well-spreadness assumption. In this experiment, we aim to show
that a large fraction of pairs of non-zero indices satisfy our well-spreadness assumption. We
do this by generating plots between distance between non-zero indices with their respective
count. To this purpose, for every data point, we compute the distance between consecutive
pair of non-zero indices and their respective count. This step is repeated for all the data
points, and then we calculate the average. We further noted the number of pair of indices
whose distance is at least d/4ψ and d/ψ. We summarise our result in Figure 3. We observed
that for Enron dataset 92.54% and 82.84% pairs of non-zero indices are at distance at least
d/4ψ and d/ψ, respectively. For KOS datasets there numbers were 88.54% and 69.44%,
respectively. We obtained a similar results on the other datasets as well. This validates that
a large number of pair of indices satisfies the well-spreadness assumption.

4.1. Experiment 1: Accuracy of Estimation

Evaluation Metric. In order to understand the behavior of our proposed algorithms
PivotHash and MaskHash on various similarity thresholds, we need to extract samples of
similar pairs (on various thresholds) from our datasets. For this purpose, we enumerated
over all the pairs, and extracted those whose Jaccard/Cosine Similarities were higher than
the given thresholds ∈ {0.95, 0.9, 0.85, 0.8, 0.6, 0.5, 0.2, 0.1}. For example: for the threshold
value 0.95, we considered only those pairs whose Jaccard/Cosine Similarities are higher
than 0.95. We used mean square error (MSE) as our evaluation criteria. Using PivotHash
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and MaskHash, we compressed the datasets to various values of compression length N. We
compressed the pruned datasets using the competitive algorithms to the same values of
N. We then calculated the MSE for all the competing algorithms, for different values of
N. We illustrate this as follows. For example, in order to calculate the MSE of PivotHash
with respect to the ground truth result, for every pair of data points, we calculated the
square of the difference between their estimated Jaccard/Cosine Similarity after the result of
PivotHash, and the corresponding ground truth Jaccard/Cosine Similarity. We added these
values for all such pairs and calculated its mean. The value of this quantity can be at most 1,
and we computed its negative logarithm base e. A higher value − log(MSE) is an indication
of better performance. Similarly, we calculated − log(MSE) of other algorithms w.r.t. their
respective ground truth similarities.

Insights. We summarize our results in Figure 5. For Jaccard Similarity, on higher and
intermediate thresholds, our algorithms tend to be performing almost similar w.r.t. other
candidates. While on lower thresholds, the performance of our algorithms is somewhat better
than DOPH and worse than BCS and MinHash. We obtained similar results for Cosine
Similarity and for other datasets as well.

4.2. Experiment 2: Ranking

Evaluation Metric. In the ranking experiment, given a dataset and a set of query points,
the task is to find all data points in the datasets that are similar to the query points, under
the desired similarity measure. To do so, we split the dataset in to two parts 90% and
10% – the bigger partition is used to compress the dataset, and is referred as the training
partition, while the second one is used to evaluate the quality of compression, and is referred
as querying partition. We call each vector of the querying partition as a query vector. For
each query vector, we compute the points in the training partition whose Jaccard/Cosine
similarity is higher than a certain threshold. We used the threshold values from the set
{0.95, 0.9, 0.85, 0.8, 0.6, 0.5, 0.2, 0.1}. We first did this on the uncompressed data in order to
find the underlying ground truth result – for every query point compute all points that are
similar to them. Then we compressed the original data, on various values of compression
lengths, using the competing algorithms. To evaluate the performance of the competing
algorithms, we used the accuracy-precision-recall ratio as our standard measure. We define
it as follows. If the set O denotes the ground truth result (result on the uncompressed
dataset), and the set O′ denotes the results on the compressed datasets, then accuracy =
|O ∩ O′|/|O ∪ O′|, precision = |O ∩ O′|/|O′| and recall = |O ∩ O′|/|O|.

Insights. For Recall measure, we summarize our results in Figure 6. For Accuracy measure,
we summarize our results in Figure 7. For Recall, on high and intermediate thresholds,
our methods perform similar to the baselines but for lower thresholds, our methods have a
significant advantage over them. For Accuracy and Precision parameters, our observations are
similar to the − log(MSE) experiments i.e. on higher and intermediate thresholds performance
of our algorithms is as good as baselines, while on lower thresholds it is slightly worse than
MinHash, SimHash, and BCS, but mostly better than DOPH and CBE. These results are
observed for both Cosine and Jaccard Similarity. We defer extended experimental results to
the appendix due to the space limitations.
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Efficiency of PivotHash and MaskHash. We comment on the efficiency of our proposed
algorithms with the other competing algorithms, and summarize our results on BBC and
KOS datasets in Figure 4. We noted the time required to compress the original dataset using
all the competing algorithms. We notice that the time required by PivotHash, MaskHash,
and BCS are comparable and is negligible for all values of N and on both the datasets.
Compression time of CBE is higher, however, it is independent of compression length N. For
the remaining algorithms, their respective compression time grows linearly with N.

Figure 4: Comparison of compression times between BBC and KOS datasets.

To summarize, both PivotHash and MaskHash offer an efficient dimensionality reduc-
tion/sketching algorithm, which compresses a given d-dimensional binary dataset to a
relatively smaller N-dimensional binary sketch, while simultaneously preserving multiple simi-
larity measures on the same sketch. Simultaneously, they perform better, or comparable than
the other competitive algorithms on both the evaluation criteria – accuracy-precision-recall
and − log(MSE).

Open Questions: Our work leaves the possibility of a couple of major open questions in
regard to MaskHash: (i) can we suggest a masking heuristic which offers a more randomness
efficient and succinct feature hashing, (ii) can we suggest a masking heuristic which could
eliminate the assumption of well-spreadness of indices (see Definition 2), (iii) In a recent
work Pratap et al. (2019) propose an improved dimensionality reduction algorithm for sparse
binary data. It is interesting to see the applications of PivotHash and MaskHash in their
algorithm to get a randomness efficient feature hashing for sparse binary data.
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Figure 5: Comparison of − log(MSE) measure on KOS and NYTimes datasets.
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Figure 6: Comparison of Recall measure on NYTimes, Enron, and KOS datasets.
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Figure 7: Comparison of Recall on BBC and Accuracy measure on ENRON and KOS datasets.
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