Randomness Efficient Feature Hashing for Sparse Binary Data

Karthik Revanuru

CRED

November 18, 2020

Joint work with Rameshwar Pratap, Ravi Anirudh and Raghav Kulkarni

High dimensional data

- Text, Geneome Data
 - bag-of-words representation
- Images
 - most pixels off when converting to black and white
 - Fourier spectrum of most real world images is sparse
- Interaction Matrices
 - user x item matrix in a recommendation system

- Inner Product
 - Number of common neighbors in social network
- Cosine Similarity
 - Text relevance
- Jaccard Similarity
 - User similarity in recommendation systems
- Euclidean Distance
 - Clustering
- Hamming Distance
 - Error correction

Why similarity preserving dimensionality reductions are useful?

- Typically similarity sub-routines are called multiple times
- $\bullet\$ Compression \rightarrow Efficient running time
- \bullet Compression \rightarrow Efficient storage space
- Also serves as a regularization by pruning unimportant information

- Text, Genome Sequencing
 - Bag of words
- Images
 - Black and white
- Interaction Matrices
 - User x item interaction

BCS – Efficient dimensionality reduction for sparse binary data

A simple and efficient dimensionality reduction for sparse binary data

- Binary to binary
- Preserves multiple similarity measures

- Document Clustering
- Recommendation systems
- Compressing Social Networks
- Extreme Classification

Our focus

Randomness efficient compression algorithm

• Why randomness is important?

- Most feature hashing algorithms are randomised
- Random bit generation is expensive
- It's a key resource like CPU and Memory
- BCS requires randomness which is linear in data dimension O(dlogN)
- Becomes expensive as data dimension *d* becomes large
- We reduce randomness from linear in *d* to logarithmic in *d*.

Our result – PivotHash

- Sample Pivots
- Cyclic distance and generate hash function
- Parity of bits fallen in same bucket
- Generate only $O(\log d)$ pivots to determine the mapping

- Well spreadness: distance between non zero indices = $\Omega(d/\psi)$
- Natural assumption on sparse binary dataset
- We give empirical validation.

PivotHash works for well-spread data

- If $k = O(\psi \log \psi)$, which implies N < 2k then sketch obtained via Pivothash approximates all the similarity measure in the same sketch.
- The number of random bits required by Pivot Hash to satisfy the above guarantee is O(ψ log ψ log d).
- ${\rm N}$ Dimension of the compressed data
- ψ Upper bound on the number of 1's in binary vectors
- k Number of sampled pivots for PivotHash
- d Dimension of dataset

Algorithm	No of random bits	Compression time
This work	$O(\psi \log \psi \log d)$	$O(\psi \log \psi \log d + \psi)$
BCS	$O(d \log N)$	$O(d \log N + \psi)$
DOPH	$O(d \log d)$	$O(d \log d + \psi + N)$
CBE	O(d)	$O(d \log d)$
Simhash	O(dN)	$O((d + \psi)N)$
Minhash	$O((d \log d)N)$	$O((d \log d + \psi) \mathrm{N})$

э

- All pair similarity and bucketize $\in \{0.95, 0.9, 0.85, 0.8, 0.6, 0.5, 0.2, 0.1\}$
- Compress vectors using Pivothash and competing algorithms.
- Compute difference of similarity before and after compression in each bucket.
- Calculate mean and take negative logarithm
- Four public datasets are used. (BBC, KOS, ENRON and NYTimes)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Experimental Results - Time Plot

- Randomness efficient (logarithmic in dimension)
- Compact Sketch
- Approximates multiple Similarities
- Can be efficiently adapted in distributed setting
- Almost similar empirical performance to BCS

Thank You

メロト メポト メヨト メヨト

2