
EFFICIENT COMPRESSION ALGORITHM FOR MULTIMEDIA DATA

Rameshwar Pratap1, Karthik Revanuru2, Ravi Anirudh2, Raghav Kulkarni3

IIT Mandi1, IIIT Bangalore2, Chennai Mathematical Institute3

ABSTRACT
In this work, we consider the problem of Cosine Similar-
ity preserving dimensionality reduction (compression) for the
sparse binary dataset. [18] suggested a compression algo-
rithm for high dimensional, sparse, binary data for preserving
Inner product and Hamming distance. In this work, we show
that their proposed algorithm also works well for Cosine Sim-
ilarity. We present a theoretical analysis of the dimension re-
duction bound and complement it with rigorous experimenta-
tion on real-world datasets. We compare our results with the
state-of-the-art for the considered problem – SimHash [9],
MinHash [21], Circulant Binary Embedding [25], and Den-
sified one Permutation Hashing [20], and show that our result
offers a significant saving in the compression time and the
number of random bits required for the compression, and si-
multaneously provides comparable performance.

Index Terms— Cosine Similarity, Simhash, Minhash,
Jaccard Similarity.

1. INTRODUCTION

Recent advancement of the Internet, IOT etc have generated
a large volume of high dimensional data. In many industrial
applications, the size of datasets has exceeded the memory
capacity. In WWW, there are datasets having a dimension
of the order of billions [1]. In this work, we focus on binary
representations of texts and images due to wide adaptation of
BoW (bag-of-words) and BoVW (bag-of-visual-words) [22]
techniques, respectively. These binary representation of texts
and images are very useful, even in the presence of popu-
lar deep learning based methods such as word2vec [17] and
convolution neural network (CNN), as they are simple, less
hardware intensive, and offer compact representations. The
binary representations of text datasets, due to BoW, are high
dimensional and sparse as word frequency within a docu-
ment follows power law – most of the words occur rarely
in a document, and higher order shingles occur only once.
This also holds true for BoVW representations of images as
well. Such sparse binary representation of datasets is also
quite common in several industrial applications [24]. Given
a dataset, computing similar data points under some pre-
defined similarity measure is a fundamental subroutine in
several machine learning and data mining applications such
as clustering, classification, identifying nearest neighbors,
ranking, etc. However, due to the “curse of dimensionality”,
a brute-force method to compute similarity scores on high

dimensional datasets is computationally very expensive and
many times, practically impossible. Moreover, storing such
a high dimensional dataset is challenging and costly. Thus,
algorithms that reduce the dimension of data while preserv-
ing the similarity scores between the data-points are going
to be extremely useful. Such algorithms help in processing
the data faster, and in turn, help to yield inferences at a faster
rate. In this work, we address this challenge and present a
dimensionality reduction or alternatively called compression
algorithm for binary datasets.

Cosine Similarity is a popular similarity measure for com-
puting the similarity between a pair of documents/images. In
this work, we focus on sparse binary data and consider Co-
sine Similarity as the similarity of interest. Let u and v be d-
dimensional vector representations of two documents. Then
Cosine Similarity between them is defined as Cos(u,v) =

〈u,v〉/||u||2||v||2, where 〈u,v〉 =
∑d
i=1 u[i]v[i], and ||u||2

denote l2 norm of vector u. Particularly, in the binary rep-
resentation of vectors we have Cos(u,v) = 〈u,v〉/

√
|u||v|,

where |u| denotes number of 1’s in vector u. The degree or
amount of similarity between two documents is captured by
their Cosine Similarity.

The problem of deriving compression algorithms for Co-
sine Similarity has been very well studied. In the follow-
ing, we discuss a few notable results in that regard. [9] sug-
gested a dimension reduction algorithm for real-valued data
preserving Cosine Similarity, which is also arguably a state-
of-the-art algorithm for binary data as well. Their idea is to
project data points on a random vector whose entries are sam-
pled from {+1,−1}, each with probability 1/2. Due to [12],
this dimension reduction preserves Cosine Similarity. Cir-
culant Binary Embedding (CBE) [25] suggest a faster vari-
ant of SimHash while offering almost a similar performance.
MinHash [6, 7, 5] suggest an algorithm to compress a collec-
tion of sets while preserving the Jaccard Similarity between
any pair of sets. [21] suggest that in the case of sparse binary
data and for preserving Cosine Similarity, MinHash is an op-
timal choice over SimHash. Further, Densified One Permuta-
tion Hashing (DOPH) [20] which is a faster but less accurate
variant of MinHash can be used as a compression algorithm
for Cosine Similarity.

Organization of the paper: We first suggest some met-
rics on which a dimension reduction algorithm can be evalu-
ated (Subsection 1.1). We then revisit the result of [18], and
then building on it, we present our bound for Cosine Simi-
larity (Subsection 1.3, Theorem 1). We present a theoreti-

1

cal comparison between BCS and other state-of-the-art algo-
rithms in Subsection 1.4. In Subsection 1.5, we discuss some
potential applications of our result. In Section 2, we present
some necessary background for the paper. In Section 3 we
give a proof of Theorem 1. In Section 4, we complement
our theoretical results via extensive experimentation on real-
world datasets. Finally, in Section 5 we conclude our discus-
sion and state some open questions.

Notations
N dimension of the compressed data (compression length)
ψ sparsity bound – upper bound on the number of 1’s in binary data.
u[i] i-th bit position of vector u.
|u| number of 1’s in the binary vector u

Cos(u,v) Cosine Similarity between binary vectors u and v.
JS(u,v) Jaccard Similarity between binary vectors u and v.
〈u,v〉 Inner Product between binary vectors u and v.

1.1. Parameters for evaluating a compression algorithm

As also mentioned in [18, 19], the quality of a compression
algorithm can be evaluated on the below parameters.

• Randomness is the number of random bits required.

• Compression time is the running time.

• The amount of space required to store the compressed
dataset.

• Compression length is the dimension of data obtained
after compression.

To preserve similarity/distance between every pair of data
points, it would be ideal to have the values of all the four
parameters as small as possible.

1.2. Revisiting compression algorithm of [18]

[18] suggested a compression algorithm BCS for binary data
that reduces the dimension of data while preserving both
Hamming Distance and Inner Product. The major advantage
here is that the compression length (reduced dimension) de-
pends only on the sparsity and is independent of the original
dimension. We briefly discuss this algorithm:

Consider a set U of n binary vectors in d-dimensional
space. Then, for any binary vector u ∈ U, the algorithm com-
presses it to an N-dimensional binary vector (say) u′, where N
to be specified later, as follows: it randomly assigns each bit
position (say) {i}di=1 of the original data to an integer {j}Nj=1.
Further, to compute the j-th bit of the compressed vector u′,
bit-positions which have been mapped to j are checked and
the parity of bits located at those positions is computed and
assigned to the j-th bit position. Figure 1 illustrates this with
an example. Henceforth, we refer to this analogy as BCS.

1.3. Our Result

This work contributes to show that BCS results in compres-
sion algorithm for Cosine Similarity too. We present our re-
sult as follows:

Fig. 1. Binary Compression Scheme (BCS) of [18]

Theorem 1. Consider a pair of binary vectors ui,uj ∈
{0, 1}d such that the maximum number of 1s in any vector
is at most ψ. If we set N = O(ψ2), and compress them into
binary vectors u′i,u′j ∈ {0, 1}N via BCS, then the following
holds with high probability,

Cos(ui,uj) = Cos(ui
′,uj

′).

Remark 2. A major benefit [18, 19] of BCS is that it works
well even in a streaming setting. The only prerequisite is an
upper bound on the sparsity ψ which requires to give a bound
on the compression length N.

Remark 3. For a pair of ψ-sparse d-dimensional binary vec-
tors, it is possible to represent them by the indices of the
nonzeros and calculate the desired similarity measures. How-
ever, such representation depends on the original dimension
d, and requires O(ψ log d) bits – O(log d) bits for each non-
zero entries. Whereas our representation is independent of
the original dimension d.

1.4. Comparison between BCS and other state-of-the-art
algorithms

We evaluate the quality of BCS with other competing algo-
rithms on the parameters stated in Subsection 1.1. Random-
ness. Randomness is a key resource as the generation of ran-
dom bits is a computationally expensive task. A major advan-
tage of BCS over other state-of-the-art algorithms is that it re-
quires significantly less amount of random bits. In BCS, each
bit position of the input data is randomly assigned to one of
the N buckets. This requires O(log N) random bits. Thus, for
all the bits in d-dimension, the mapping requires O(d log N)
amount of randomness in total. On the other hand, SimHash
requires generating a random vector from {+1,−1}d, which
requires O(d) random bits. This random vector results in one
bit of the compressed vector after hashing. Thus for a com-
pression length N, SimHash requires O(dN) random bits.
CBE [25] requires generating only one random vector from
{+1,−1}d, and requires O(d) random bits. MinHash re-
quires creating N permutations in d-dimension. One permu-
tation in d dimension requires generating d random numbers
each within 1 and d. Generating a number between 1 and d re-
quires O(log d) random bits, and generating d such numbers
require O(d log d) random bits. Thus, generating N such ran-
dom permutations requires O(Nd log d) random bits. Finally,

2

Algorithm No of random bits Dim. reduction time
BCS O(d log N) O(d log N + ψ)

DOPH [20] O(d log d) O(d log d+ ψ + N)
CBE [25] O(d) O(d log d)

SimHash [9] O(dN) O((d+ ψ)N)
MinHash [7] O((d log d)N) O((d log d+ ψ)N)

Table 1. A comparison among the candidate algorithms, on the number of
random bits and the dimensionality reduction time, to get a sketch of length
N of one data object. Dimensionality reduction time includes both 1) time
required to generate hash function, which is of order the number of random
bits, 2) time required to generate the sketch using the hash functions.

DOPH [20] requires generating only one random permuta-
tion in d-dimension. Therefore, it requiresO(d log d) random
bits.

Compression time. BCS is significantly faster than the
state-of-the-art algorithms because generation of random bits
takes significant time, thus, the relative speed-up is propor-
tional to the savings in the number of random bits needed.
Furthermore, for a dimension N, SimHash requires to scan
each input vector N times – one for each random vector
{+1,−1}d, and MinHash also requires to scan each input
vector N times – one for each random permutation of size d.
However, BCS requires just a single scan in order to get a
compressed representation in dimension N. In Section 4, we
numerically quantify the speed-up of BCS over the state-
of-the-art algorithms via experimentations on real-world
datasets. We summarize the comparison of the amount of
randomnesses required and the compression time in Table 1.

Space. BCS, SimHash, and CBE generate binary ma-
trix as a result of their compression algorithm. However,
MinHash and DOPH generate an integer matrix as opposed
to the binary matrix generated by BCS. Therefore, for a
given compression length, the space required to store the
compressed data of BCS, SimHash, and CBE is O(log d)
times less as compared to MinHash and DOPH. Further, the
binary form of compressed data leads to faster inference for
the desired task as efficient bitwise operations can be used by
the algorithm.

Compression length. We numerically quantify on the
compression length of BCS with respect to the state-of-the-art
via experimentations (see Section 4) on real-world datasets.

1.5. Applications.

In cases of high dimensional, sparse data, BCS can be
used to improve numerous applications where currently
other state-of-the-art algorithms such as SimHash, CBE
and MinHash [21] are in use.

Faster/scalable ranking of documents. Given a corpus
of documents and a set of query documents, the task is to
find all documents in the corpus that are similar to the query
documents. This problem is a fundamental sub-routine in
many applications like near-duplicate data detection [16, 23],
efficient document similarity search [14] plagiarism detec-
tion [8]. SimHash and MinHash are popular choices of al-

gorithms for such problems. However, when documents are
represented in “BoW” format, BCS outperforms the other al-
gorithms, on the parameters stated earlier. Scalable Clus-
tering of documents. Spherical k-means [11] is a popular
choice of clustering text documents when they are represented
in “BoW” format. Usually, such representation of documents
consists of high dimensional sparse binary vectors. Here, by
exploiting the sparsity of documents, BCS can be more effec-
tive than other competing algorithms.

Other Applications. Beyond above applications, SimHash
compression has been widely used in applications like Spam
detection [4], compressing social networks [10], all pair simi-
larity [3], collaborative filtering [2]. As in most of these cases,
data objects are sparse, BCS can provide almost accurate and
efficient solutions to these problems.

We experimentally validate the performance of BCS for
ranking experiments on UCI [15] and BBC [13] “BoW”
dataset and achieved significant improvements over other
competing algorithms. We discuss this in Subsection 4. Sim-
ilarly, other mentioned applications can also be validated.

2. BACKGROUND

Fact 4 (Markov’s inequality). Let X be a non-negative ran-
dom variable, and λ be a positive real number. Then Pr[|X ≥
λ] ≤ E[X]

λ .

SimHash – a sketching algorithm for Cosine Similar-
ity [9].

Given a vector u ∈ Rd, SimHash [9] generates a random
vector r ∈ {−1,+1}d, with each component generated from
{−1,+1} with probability 1/2, and only stores the sign of
the projected data. That is,

SimHash(r)(u) =

{
1, if 〈u, r〉 ≥ 0.

0, otherwise.

[12] suggests that SimHash offers the following guarantee .
Pr[SimHash(r)(u) = SimHash(r)(v)] = 1− θ

π ,

where θ = cos−1 (〈u,v〉/||u||2||v||2). As mentioned ear-
lier the term 〈u,v〉/||u||2||v||2 is Cosine Similarity between
vectors u and v. When u,v are binary vectors it becomes
〈u,v〉/

√
|u|.|v|. The Cosine Similarity between two vectors

u,v ∈ Rd can be computed via Hamming Distance between
their sketch binary vectors u′,v′ ∈ {0, 1}N. Due to [9], we
have the following cos(u,v) = cos

[(
π
N

)
dH(u′,v′)

]
.

3. ANALYSIS

Compressing a ψ-sparse d-dimensional binary vector into a
N dimensional binary vector via BCS can be thought of as a
experiment where ψ balls are thrown randomly into N bins.
We call an event as collision if more than one ball falls into
a bin. Our aim is to choose a value of N such that, with high

3

probability, collision can be avoided. The lemma below sug-
gests such a bound on N which depends only on the sparsity
and is independent of the original dimension d.

Lemma 5. Consider a binary vector u ∈ {0, 1}d. If we set
N = 10ψ2, and compress it into a binary vector u′ ∈ {0, 1}N
via BCS. Then the following is true with probability 0.9,

|u′| = |u|.

Proof. Consider a vector u with u[i] = u[j] = 1, then we use
an indicator random variable Xij to indicate the event when
both i and j bit position fall in the same bin. We call that
even as collision. Let we denote X to be the total number of
collisions, that is, X = Σi 6=jXij . The number of collisions
determine the number of 1’s, or the value of |u′|. We give a
bound on the expected number of collisions as follows

E[X] = Σi 6=jE[Xij] = Σi 6=j Pr[Xij = 1] =
1

N

(
ψ

2

)
.

The above expression holds due to the linearity of expec-
tation. If we set N = 10ψ2, then due to Markov Inequality
(see Section 2), we have

Pr[X ≥ 1] ≤ 1

10
,

which implies that with probability at least 0.9, we have
|u′| = |u|.

The following lemma extends the result of Lemma 5 for a
pair of ψ-sparse binary vectors ui,uj ∈ {0, 1}d. Suppose we
get the vectors ui

′,uj
′ ∈ {0, 1}N by compressing ui,uj via

BCS. We derive a new binary vector Uij ∈ {0, 1}d which is
obtained by taking bitwise-AND between ui and uj, that is,
k-th bit of Uij is obtained by taking bitwise-AND between
the k-th bits of ui and uj. Similarly, we derive U′ij ∈ {0, 1}N
which is obtained by taking bitwise-AND between u′i and u′j.
The number of 1’s in Uij and U′ij corresponds to the inner
product between ui and uj, and the inner product between u′i
and u′j, respectively. A proof of Lemma 6 holds by consider-
ing Uij as an input to Lemma 5.

Lemma 6. Consider a pair of binary vectors ui,uj ∈ {0, 1}d
such that the maximum number of 1s in any vector is at most
ψ. If we set N = O(ψ2), and compress them into binary
vectors ui

′,uj
′ ∈ {0, 1}N via BCS, then the following holds

with high probability,

〈ui,uj〉 = 〈ui
′,uj

′〉.

A proof of the Theorem 1 follows easily due to lemma 5
and lemma 6 and the definition of Cosine Similarity.

The following corollary extends the result of Theorem 1
for a set of n binary vectors.

Proof of Lemma 6 is similar to the proof of Theorem 2 of [18]. However,
in this paper, we present a simplified version of the proof.

Corollary 7. Consider a set U of binary vectors {ui}ni=1 ⊆
{0, 1}dsuch that the maximum number of 1s in any vector is
at most ψ. If we set N = O(ψ2 log n), and compress them
into a set U′ of binary vectors {u′i}ni=1 ⊆ {0, 1}N via BCS.
Then for all ui,uj ∈ U, the following is true w.h.p.

Cos(ui,uj) = Cos(ui
′,uj

′).

4. EXPERIMENTAL EVALUATION

We performed our experiments on a machine having the fol-
lowing configuration: CPU: Intel(R) Core(TM) i5-3320M
CPU @ 2.60GHz x 4; Memory: 7.5 GB; OS: Ubuntu 18.04;
Model: Lenovo Thinkpad T430.

Datasets.The experiments were performed on publicly
available datasets - namely, NYTimes news articles (number
of points = 300000, dimension = 102660), Enron Emails
(number of points = 39861, dimension = 28102), and KOS
blog entries (number of points = 3430, dimension = 6906)
from the UCI machine learning repository [15]; and BBC
News Datasets (number of points = 2225, dimension = 9635
) [13]. We considered the entire corpus of KOS and BBC
News datasets, while for NYTimes, ENRON datasets we
sampled 5000 data points.

Competing Algorithms: We compared the performance
of BCS with the state-of-the-art sketching algorithms for
the task such as SimHash [9], Circulant Binary Embedding
(CBE) [25] – a faster variant of SimHash, MinHash [21],
and Densified One Permutation Hashing (DOPH) [20] – a
faster variant of MinHash. For a pair of binary vectors, we
calculate the Cosine Similarity using DOPH as follows: we
first calculate the Jaccard Similarity using DOPH, and then
using the result of [21] we find an estimate of their Cosine
Similarity.
4.1. Experiment 1: Accuracy of Estimation

We first evaluated the fidelity of the estimate of BCS. We
discuss it below.

Evaluation Metric. To understand the behaviour of BCS
on various similarity regime, we extracted samples of similar
pairs (on various thresholds) from our datasets. For this pur-
pose, we enumerated over all the pairs, and extracted those
whose Cosine Similarities were higher than the given thresh-
olds ∈ {0.95, . . . , 0.1}. We used mean square error (MSE)
as our evaluation criteria. Using all the candidate algorithms
we compressed the datasets to various values of compression
length N. We then calculated their MSE values for different
values of N. We illustrate this as follows. For example, in or-
der to calculate the MSE of BCS w.r.t. the ground truth result,
for every pair of data points, we calculated the square of the
difference between their estimated Cosine Similarity obtained
after compression, and the corresponding ground truth Cosine
Similarity. We added these values for all such pairs and cal-
culated its mean. The value of this quantity is at most 1, and
we computed the negative logarithm base e of this quantity. A
smaller MSE corresponds to a larger − log(MSE), therefore,
a higher value − log(MSE) is an indication of better perfor-
mance.

4

Insights. We summarize our results in Figure 5. The main
advantage of BCS was observed on higher and intermediate
thresholds, where BCS tend to be performing significantly
better/comparable than all the competing algorithms. On low
threshold values such as {0.2, 0.1} performance of BCS was
observed better than DOPH [20] and simultaneously compa-
rable with respect to the remaining competitive algorithms.

4.2. Experiment 2: Ranking

Evaluation Metric. In the ranking experiment, given a
dataset and a set of query points, the task is to find all data
points in the datasets that are similar to the query points, un-
der Cosine Similarity. To do so, we split the dataset into two
parts 90% and 10% – the bigger partition is used to compress
the data and is referred as the training partition, while the
second one is used to evaluate the quality of the compression
and is referred as querying partition. We call each vector
of the querying partition as a query vector. For each query
vector, we compute the vectors in the training partition whose
Cosine similarity is higher than a certain threshold (ranging
from 0.1 to 0.95). We first do this on the uncompressed data
in order to find the underlying ground truth result – for every
query vector compute all vectors that are similar to them. We
calculate the ground truth result using a brute-force linear
search algorithm on the original data. Then we compress the
original data, on various values of compression lengths, using
all the competing algorithms, and compute all vectors that are
similar to the query vector. To evaluate the performance of the
competing algorithms, we used the accuracy-precision-recall
ratio as our standard measure. If the setO denotes the ground
truth result (result on the uncompressed dataset), and the set
O′ denotes the results on the compressed datasets, then ac-
curacy = |O ∩ O′|/|O ∪ O′|, precision = |O ∩ O′|/|O′| and
recall = |O ∩ O′|/|O|. For each query vector, we calculate
the accuracy/precision/recall of all the competing algorithms
using the approach described above, on various values of
compression length. This gave us the accuracy/precision/re-
call of compression of that particular query vector. We repeat
this for every vector in the querying partition, and take the
average, and we plot the average accuracy/precision/recall for
each value in support threshold and compression length. We
also note down the corresponding compression time on each
of the compression lengths for all the competing algorithms.

Insights. We summarize the comparison of the recall
measure in Figure 4. A major advantage of BCS on the recall
measure was observed on low-threshold values where it sig-
nificantly outperformed with respect to the other candidate al-
gorithms. On higher and intermediate threshold values perfor-
mance of BCS was observed similar to the other competing
algorithms. We summarize the comparison of the accuracy
measure in Figure 3, 4. Here again, on higher and interme-
diate threshold values performance of BCS on the accuracy
measure was observed similar to the other competing algo-
rithms. However, on low threshold values such as {0.1, 0.2}
the performance of BCS was moderate with respect to other
the candidate algorithms. Performance of BCS on the preci-
sion measure was observed similar to the accuracy measure.

We defer the plots to the full version of the paper.
Efficiency of BCS. We comment on the efficiency of

BCS with the other competing algorithms and summarize the
results in Figure 2. We noted the time required to compress
the original dataset using all the competing algorithms, and
notice that the time required by BCS is negligible for all val-
ues of compression length N, on all the datasets. Compression
time of CBE is higher than ours, however, it is independent
of the N. For the remaining algorithms, their respective com-
pression time grows linearly with N.

We further give a numerical speedup of BCS w.r.t. other
algorithms and summarize the results in Table 2. To do so,
we pick the compression length value such that by ignoring
the low thresholds results, the minimum accuracy across all
the algorithms is at least 0.9. It turns out that the minimum
compression length of 500 holds the purpose for all the four
datasets. We obtained a significant speed up in the compres-
sion time. For BBC dataset, on the compression length 500,
BCS was 108.6× faster than SimHash, 370.9× faster than
CBE, 130.2× faster than MinHash, and 48.4× faster than
DOPH. Please note that SimHash is faster than CBE on the
compression length 500. However, the compression time for
CBE remains constant even for higher compression lengths
whereas the compression time for SimHash increases lin-
early with the same. Moreover, after ignoring the plots corre-
sponding to the low thresholds ∈ {0.1, 0.2, 0.3, 0.4}, the av-
erage accuracy of BCS was 0.99, while for SimHash, CBE,
MinHash and DOPH it was 0.98, 0.98, 0.99 and 0.94 only.
We observed a similar performance on the other datasets as
well.

5. CONCLUDING REMARKS AND OPEN
QUESTIONS

We showed that BCS is able to compress sparse, high-
dimensional binary data while approximating the Cosine Sim-
ilarity. Our algorithm is considerably faster than the “state-
of-the-art” SimHash, MinHash, CBE [25], and DOPH [20]
and also maintains almost equal accuracy while significantly
reducing the amount of randomness required. Moreover, the
compressed representation obtained from BCS is in binary
form, as opposed to the integer in case of MinHash and
DOPH, due to which the space required to store the com-
pressed data is reduced, and consequently leads to a faster
search on the compressed representation. Another major ad-
vantage of BCS is that its compression bound is independent
of the dimensions of the data, and only grows polynomially
with the sparsity and logarithmically with the number of data
points. Our work leaves the possibility of several open ques-
tions : a) improving the dimensionality reduction bound and
giving a matching lower bound on the same, and b) giving a
variance analysis on the cost. Finally, given the simplicity of
our method, we hope that it will be adopted in practice.

For both the experiments, even on the KOS and BBC dataset, we ob-
tained a similar comparison between BCS and other competing algorithms.
We defer the plots to the full version of the paper.

5

Fig. 2. Comparison on the Compression Time for Ranking Experiments.

Fig. 3. Comparison of Accuracy measure on NYTimes datasets.

Dataset Compression Speedup of BCS Speedup of BCS Speedup of BCS Speedup of BCS
length w.r.t. SimHash w.r.t. CBE w.r.t. MinHash w.r.t. DOPH

BBC 500 108.66× 370.9× 130.2× 48.4×
Enron 500 43.3× 233.6× 58.1× 48.01×
KOS 500 50.8× 100.8× 69.2× 32.3×

NYTimes 500 51.03× 158.16× 67.66× 56.87×

Table 2. Comparison among BCS, SimHash, CBE, MinHash and DOPH on real-world datasets experiments. For comparison, we set the minimum
accuracy as 0.94 which is obtained at the compression length 500 for all the algorithms across all the datasets. We ignored the results of the low thresholds
∈ {0.1, 0.2, 0.3, 0.4} as accuracies on them were low across all the candidate algorithms.

6

Fig. 4. Comparison of Accuracy measure on ENRON datasets, and Recall measure on NYTimes and ENRON datasets.

7

Fig. 5. Comparison of log(MSE) measure on NYTimes, ENRON and BBC datasets. A higher value is an indication of better performance.

8

6. REFERENCES

[1] Alekh Agarwal, Oliveier Chapelle, Miroslav Dudı́k, and
John Langford. A reliable effective terascale linear
learning system. Journal of Machine Learning Re-
search, 15:1111–1133, 2014.

[2] Yoram Bachrach, Ely Porat, and Jeffrey S. Rosenschein.
Sketching techniques for collaborative filtering. In IJ-
CAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, Cali-
fornia, USA, July 11-17, 2009, pages 2016–2021, 2009.

[3] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan
Srikant. Scaling up all pairs similarity search. In Pro-
ceedings of the 16th International Conference on World
Wide Web, WWW 2007, Banff, Alberta, Canada, May
8-12, 2007, pages 131–140, 2007.

[4] Andrei Z Broder. On the resemblance and containment
of documents. In Compression and Complexity of Se-
quences 1997. Proceedings, pages 21–29. IEEE, 1997.

[5] Andrei Z. Broder. Identifying and filtering near-
duplicate documents. In Combinatorial Pattern Match-
ing, 11th Annual Symposium, CPM 2000, Montreal,
Canada, June 21-23, 2000, Proceedings, pages 1–10,
2000.

[6] Andrei Z. Broder. Min-wise independent permutations:
Theory and practice. In Automata, Languages and
Programming, 27th International Colloquium, ICALP
2000, Geneva, Switzerland, July 9-15, 2000, Proceed-
ings, page 808, 2000.

[7] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and
Michael Mitzenmacher. Min-wise independent permu-
tations (extended abstract). In Proceedings of the Thirti-
eth Annual ACM Symposium on the Theory of Comput-
ing, Dallas, Texas, USA, May 23-26, 1998, pages 327–
336, 1998.

[8] Sahin Buyrukbilen and Spiridon Bakiras. Secure similar
document detection with simhash. In Secure Data Man-
agement - 10th VLDB Workshop, SDM 2013, Trento,
Italy, August 30, 2013, Proceedings, pages 61–75, 2013.

[9] Moses Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings on 34th Annual
ACM Symposium on Theory of Computing, May 19-
21, 2002, Montréal, Québec, Canada, pages 380–388,
2002.

[10] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi,
Michael Mitzenmacher, Alessandro Panconesi, and
Prabhakar Raghavan. On compressing social networks.
In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Paris, France, June 28 - July 1, 2009, pages 219–228,
2009.

[11] Inderjit S. Dhillon and Dharmendra S. Modha. Concept
decompositions for large sparse text data using cluster-
ing. Machine Learning, 42(1/2):143–175, 2001.

[12] Michel X. Goemans and David P. Williamson. Improved
approximation algorithms for maximum cut and satis-
fiability problems using semidefinite programming. J.
ACM, 42(6):1115–1145, 1995.

[13] Derek Greene and Pádraig Cunningham. Practical so-
lutions to the problem of diagonal dominance in kernel
document clustering. In Proc. 23rd International Con-
ference on Machine learning (ICML’06), pages 377–
384. ACM Press, 2006.

[14] Qixia Jiang and Maosong Sun. Semi-supervised
simhash for efficient document similarity search. In The
49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies, Pro-
ceedings of the Conference, 19-24 June, 2011, Portland,
Oregon, USA, pages 93–101, 2011.

9

[15] M. Lichman. UCI machine learning repository, 2013.

[16] Gurmeet Singh Manku, Arvind Jain, and Anish Das
Sarma. Detecting near-duplicates for web crawling. In
Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, Banff, Alberta, Canada,
May 8-12, 2007, pages 141–150, 2007.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing Sys-
tems 26: 27th Annual Conference on Neural Informa-
tion Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United
States, pages 3111–3119, 2013.

[18] Rameshwar Pratap, Raghav Kulkarni, and Ishan So-
hony. Efficient dimensionality reduction for sparse bi-
nary data. In IEEE International Conference on Big
Data, Big Data 2018, Seattle, WA, USA, December 10-
13, 2018, pages 152–157, 2018.

[19] Rameshwar Pratap, Ishan Sohony, and Raghav Kulka-
rni. Efficient compression technique for sparse sets.
In Advances in Knowledge Discovery and Data Min-
ing - 22nd Pacific-Asia Conference, PAKDD 2018, Mel-
bourne, VIC, Australia, June 3-6, 2018, Proceedings,
Part III, pages 164–176, 2018.

[20] Anshumali Shrivastava. Optimal densification for fast
and accurate minwise hashing. In Proceedings of the
34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
pages 3154–3163, 2017.

[21] Anshumali Shrivastava and Ping Li. In defense of min-
hash over simhash. In Proceedings of the Seventeenth
International Conference on Artificial Intelligence and
Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-
25, 2014, pages 886–894, 2014.

[22] Josef Sivic and Andrew Zisserman. Video google: A
text retrieval approach to object matching in videos.
In ICCV, pages 1470–1477. IEEE Computer Society,
2003.

[23] Sadhan Sood and Dmitri Loguinov. Probabilistic near-
duplicate detection using simhash. In Proceedings of the
20th ACM International Conference on Information and
Knowledge Management, CIKM ’11, pages 1117–1126,
New York, NY, USA, 2011. ACM.

[24] Kenneth Goldman Tomas Lloret Llinares Jim McFad-
den Fernando Pereira Joshua Redstone Tal Shaked
Tushar Chandra, Eugene Ie and Yoram Singer. Sibyl:
a system for large scale machine learning. Technical re-
port.

[25] Felix X. Yu, Sanjiv Kumar, Yunchao Gong, and Shih-Fu
Chang. Circulant binary embedding. In Proceedings of
the 31st International Conference on International Con-
ference on Machine Learning - Volume 32, ICML’14,
pages II–946–II–954. JMLR.org, 2014.

10

	 Introduction
	 Parameters for evaluating a compression algorithm
	 Revisiting compression algorithm of KulkarniP16
	 Our Result
	 Comparison between BCS and other state-of-the-art algorithms
	 Applications.

	 Background
	 Analysis
	 Experimental Evaluation
	 Experiment 1: Accuracy of Estimation
	 Experiment 2: Ranking

	 Concluding remarks and open questions
	 References

