EFFICIENT COMPRESSION ALGORITHM FOR MULTIMEDIA DATA

Karthik Revanuru

CRED

24th Sep 2020

Karthik Revanuru

24th Sep 2020 1/15

- Text
 - bag-of-words representation
- Images
 - most pixels off when converting to black and white
 - Fourier spectrum of most real world images is sparse
- Interaction Matrices
 - user x item matrix in a recommendation system

- Inner Product
 - Number of common neighbors in social network
- Cosine Similarity
 - Text relevance
- Jaccard Similarity
 - User similarity in recommendation systems
- Euclidean Distance
 - Clustering
- Hamming Distance
 - Error correction

Why similarity preserving dimensionality reductions are useful ?

- Typically similarity sub-routines are called multiple times
- $\bullet\$ Compression \rightarrow Efficient running time
- \bullet Compression \rightarrow Efficient storage space
- Also serves as a regularization by pruning unimportant information

- Text
 - Bag of words
- Images
 - Black and white
- Interaction Matrices
 - User x item interaction

A simple and efficient dimensionality reduction for sparse binary data

- Binary to binary
- Earlier work preserves multiple similarity measures in one shot
 - Inner product
 - Jaccard similarity
 - Hamming distance
- In this work we show it preserves cosine similarity also
- Efficient
 - Fast
 - Space-efficient
 - Less randomness

- Partition the co-ordinates into k buckets randomly
- For each of the k bucket take XOR of the bits within it

Compression Scheme Diagram

Input vector V = (0, 1, 0, 1, 1, 0, 0, 0, 0, 0) dim(V) = d = 10 and reduced dimension = N = 3 Random bucketing (b2, b1, b2, b2, b3, b1, b3, b1, b2, b3) Output vector = (1, 1, 0) Consider a pair of binary vectors $u_i, u_j \in \{0, 1\}^d$ such that the maximum number of 1s in any vector is at most ψ . If we set $N = O(\psi^2)$, and compress them into binary vectors $u_i^{\lambda}, u_j^{\lambda} \in \{0, 1\}^N$ via BCS, then the following holds with high probability

$$Cos(u_i, u_j) = Cos(u_i^{\prime}, u_j^{\prime})$$

Two types of experiments

- MSE
- Ranking

DataSet	Dimension	Speedup	Speedup	Speedup	Speedup
		of BCS	of BCS	of BCS	of BCS
		w.r.t	w.r.t.	w.r.t	w.r.t
		SimHash	CBE	MinHash	DOPH
BBC	9635	108.66X	370.9X	130.2X	48.4X
Enron	28102	43.3X	233.6X	58.1X	48.01X
KOS	6906	50.8X	100.8X	69.2X	32.3X
NYTimes	102660	51.03X	158.16X	67.66X	56.87X

¹Compressed Dimension is 500 in all cases.

Karthik Revanur<u>u</u>

Experiments on NYTimes to calculate Accuracy using Cosine Similarity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Improves running time by 100x ++
- Improves space storage by 32x ++
- Matches the benchmark accuracies
- Beats some of the benchmarks on downstream evaluations

- Recommendation systems
- Near-duplicate detection
- Hierarchical clustering
- Genome-wide association study
- Image & Audio similarity identification
- Digital video fingerprinting
- Extreme Classification

Thank You

æ

メロト メポト メヨト メヨト