EFFICIENT COMPRESSION ALGORITHM FOR MULTIMEDIA DATA

Karthik Revanuru

CRED

24th Sep 2020

High dimensional Multimedia data

- Text
- bag-of-words representation
- Images
- most pixels off when converting to black and white
- Fourier spectrum of most real world images is sparse
- Interaction Matrices
- user x item matrix in a recommendation system

Popular similarity/distance measures

- Inner Product
- Number of common neighbors in social network
- Cosine Similarity
- Text relevance
- Jaccard Similarity
- User similarity in recommendation systems
- Euclidean Distance
- Clustering
- Hamming Distance
- Error correction

Similarity preserving dimensionality reductions

Why similarity preserving dimensionality reductions are useful ?

- Typically similarity sub-routines are called multiple times
- Compression \rightarrow Efficient running time
- Compression \rightarrow Efficient storage space
- Also serves as a regularization by pruning unimportant information

Our focus: sparse binary multimedia data

- Text
- Bag of words
- Images
- Black and white
- Interaction Matrices
- User x item interaction

Our results

A simple and efficient dimensionality reduction for sparse binary data

- Binary to binary
- Earlier work preserves multiple similarity measures in one shot
- Inner product
- Jaccard similarity
- Hamming distance
- In this work we show it preserves cosine similarity also
- Efficient
- Fast
- Space-efficient
- Less randomness

Main Idea: Bucketing + XOR

- Partition the co-ordinates into k buckets randomly
- For each of the k bucket take XOR of the bits within it

Compression Scheme Diagram

Input vector $V=(0,1,0,1,1,0,0,0,0,0)$
$\operatorname{dim}(\mathrm{V})=\mathrm{d}=10$ and reduced dimension $=\mathrm{N}=3$
Random bucketing (b2, b1, b2, b2, b3, b1, b3, b1, b2, b3)
Output vector $=(1,1,0)$

Cosine Similarity

Consider a pair of binary vectors $\boldsymbol{u}_{\boldsymbol{i}}, \boldsymbol{u}_{\boldsymbol{j}} \in\{0,1\}^{d}$ such that the maximum number of 1 s in any vector is at most ψ. If we set $N=O\left(\psi^{2}\right)$, and compress them into binary vectors $\boldsymbol{u}_{\boldsymbol{i}}^{\prime}, \boldsymbol{u}_{\boldsymbol{j}}^{\prime} \in\{0,1\}^{N}$ via BCS , then the following holds with high probability

$$
\operatorname{Cos}\left(u_{i}, u_{j}\right)=\operatorname{Cos}\left(u_{i}^{\prime}, u_{j}^{\prime}\right)
$$

Experimental Results - Dataset and Speedup

Two types of experiments

- MSE
- Ranking

DataSet	Dimension	Speedup of BCS w.r.t SimHash	Speedup of BCS w.r.t. CBE	Speedup of BCS w.r.t MinHash	Speedup of BCS w.r.t DOPH
BBC	9635	$108.66 X$	$370.9 X$	$130.2 X$	$48.4 X$
Enron	28102	$43.3 X$	$233.6 X$	$58.1 X$	$48.01 X$
KOS	6906	$50.8 X$	$100.8 X$	$69.2 X$	$32.3 X$
NYTimes	102660	$51.03 X$	$158.16 X$	$67.66 X$	$56.87 X$

${ }^{1}$ Compressed Dimension is 500 in all cases.

Experimental Results - MSE Plot

Experiments on ENRON to calculate -log(MSE) using Cosine Similarity

Experimental Results - Ranking Plot

Experiments on NYTimes to calculate Accuracy using Cosine Similarity

Experimental Results - Summary

- Improves running time by $100 x++$
- Improves space storage by $32 x++$
- Matches the benchmark accuracies
- Beats some of the benchmarks on downstream evaluations

Applications

- Recommendation systems
- Near-duplicate detection
- Hierarchical clustering
- Genome-wide association study
- Image \& Audio similarity identification
- Digital video fingerprinting
- Extreme Classification

Thank You

