
FastEMB: Faster Succinct and Accurate Node Embedding of Large
Graphs

ABSTRACT
We consider the problem of embedding all nodes of a very large

network in a low-dimensional space. Such low-dimensional rep-

resentations of graphs are very useful for node classification, link

prediction, recommendation, and community detection. Existing

node embedding algorithms usually involve solving an optimization

problem to “learn” an optimal embedding and suffer from scalability

worries when given as input massively sized graphs. In this work,

we propose a novel embedding algorithm named FastEMB that gen-
erates random low-dimensional binary vectors as the embedding

of nodes. Our algorithm relies on the recently proposed BinSketch
algorithm [22] for sparse binary data. We also present an algorithm

to estimate important properties of the graph required for common

machine learning tasks from these vectors.

We compare the performance of FastEMB on the tasks of node

classification and link prediction with several state-of-the-art al-

gorithms for the said purpose, such as node2vec, DeepWalk, and
LINE on eight real-life datasets. We observed significant speedup

in terms of embedding computation time which is the key strength

of FastEMB. At the same time, we obtained more accurate results

compared to the state-of-the-art algorithms. Our proposed binary

embedding is highly efficient in terms of space usage as compared

to real-valued vectors obtained by other candidate algorithms. For

the link prediction task on the Gowalla dataset, the speedup was

731 times as compared to node2vec, 661 times as compared to

DeepWalk, and 6751 times as compared to LINE, while simultane-

ously offering about 8% improvement in accuracy and taking 3.72

times lesser space. Our technique is adaptable for streaming and

dynamic graphs with addition of edges. We provide extensive the-

oretical analysis, giving bounds on accuracy and error wherever

possible, to explain the behaviour of FastEMB. Given the simplicity

of our method, we hope that it can be easily adopted in practice.

KEYWORDS
Dimensionality Reduction, Sketching, Node Embedding, Social Net-

work, Link Prediction.

ACM Reference Format:
. 2019. FastEMB: Faster Succinct and Accurate Node Embedding of Large

Graphs. In Proceedings of ACM Conference (Conference’17). ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Graph is a fundamental and ubiquitous data structure that is used

extensively in several applications within computer science and re-

lated domains. Specifically, graphs can be used in situations where

the interactions need to be captured between individual units –

units are modeled as nodes, and interactions between them are

modeled as edges. Graphs are used to model social networks, bio-

logical protein-protein networks, molecular graph structures, rec-

ommender systems, etc. Besides modeling, they are also crucially

used for the task of inferencing, prediction, and for discovering new

patterns using techniques from machine learning. For example, to

recommend new friends in a social network [1], classify the role

of a protein in an interaction graph [10], classify posts in a social

network [1], forecast the future traffic speed in a road network [18].

A fundamental challenge in the above applications is to come up

with a way to incorporate the information about the structure of a

graph to a machine learning model. This is done via computing low-

dimensional vector embedding of the nodes of a graph such that

they maintain the structural or geometric relationship of the graph

in low-dimensional space. This node embedding is then further

fed into downstream machine learning algorithms for tasks such

as node classification, clustering, link prediction. In this work, we

consider the problem of computing a low-dimensional embedding

of graphs such that the embedding inherits neighborhood property

of the original graph.

A number of challenges have been uncovered in the last few

decades that have seen a lot of activity on efficient and effective

node embedding [11].

It is desirable of a node embedding technique to have a sound

theoretical bedrock that is independent of the end goal of classi-

fication or link prediction. The theoretical discussions found in

most articles are often limited to a particular optimization problem

whose semantics is unclear beyond a specific machine learning

task. Furthermore, the embedding is often obtained by solving an

optimization problem (say, using gradient descent) and thus lacks

any manner of worst-case guarantees.

An embedding is fed as input to a machine learning algorithm,

and is therefore, required to be extremely fast so as to not become

the bottleneck. As the applications move towards trillion sized

graphs, it would be better to have approaches that favour distributed

computing; however, learning-based embedding approaches do not

typically fall into this league. Recently a few GPU-based techniques

are proposed to cater these requirements, but, we are interested in

vanilla CPU-only approaches.

The space complexity of generating and storing embedding of all

nodes (to give as input to a machine learning task) could be signifi-

cant for massive graphs since most existing approaches generate

the embedding of an entire graph at once. The need of the hour are

approaches that enable distributed storage of embedding and are

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

able to handle evolving graphs in which embedding of nodes with

new edges can be updated and stored in a cheaper manner.

Semantics of the embedded representation is a big challenge

since many proposed techniques are evaluated using statistical

methods on standard datasets which fails to bring out the rich struc-

tural invariants that these techniques might be capturing. A few

approaches, like deepwalk that capture short random walks [21]

and GraRep that capture powers of an adjacency matrix [5], explic-

itly consider certain structural aspects but it is unclear if and how

their embeddings fare on other structural properties of a graph.

Finally, randomization has proved to be highly effective time and

again; yet, barring a few approaches based on random walks [9, 21],

randomized approaches are missing in this domain.

1.1 Our contribution
In this work, we present FastEMBwhich takes a large graph as input
and outputs binary embedding corresponding to each node. It uses

a randomized hashing idea named BinSketch that was recently

proposed to compress large vectors [22]. FastEMB takes an n × n
adjacency matrix or edge list of an n-node graph as input and

outputs a d-dimensional binary embedding for each node where

d is decided based upon the sparsity of each row of the adjacency

matrix. We define sparsity of a vector as the number of ones; it

is common for real-life graphs, like the ones we considered for

experiments, to have a sparsity much lower compared to n. We also

present an EstCN algorithm to estimate the number of common

neighbors between any two nodes with worst-case bounds.

FastEMB incorporates some of the features we outlined earlier

and has a few other appealing properties that gives it an edge over

the existing techniques, all of which we briefly touch upon now.

Theoretical bounds and semantics of embedding:We show

that the embedding, even though compressed, retains information

about the graph structure like the number of common neighbors,

the number of even length paths, etc. More generally, we discuss

how any even power of the adjacency matrix can be approximately

computed from the embedding. Not surprisingly, our embedding

allowed us to perform link prediction and node classification better

than others; we conjecture that the FastEMB embedding would be

highly suitable for machine learning tasks that rely on structural

graph properties. For all the approximation results mentioned above

we bound the additive inaccuracy and the probability of error. We

empirically validate this on the task of link prediction and node
classification and noticed that FastEMB generally outperforms other

candidate algorithms by a margin of 5 − 7%.

Fast embedding: FastEMB takes an adjacency matrix or an

edge list of a graph as input and outputs binary embeddings of each

node using just one pass over the graph and doing bit manipulations.

Due to its simplicity it computes the embedding in almost real time.

For example, on the Flickr [28] dataset which has 80513 nodes

and 5899882 edges, FastEMB computes its embedding within 12

secs (for d = 100) to 23 secs (for d = 4000) on a standard server (see

Section 4 for configuration); in contrast, node2vec did not finish

within 24 hours and LINE took 100 mins for a single epoch.

Succinct representation: FastEMB generates binary embed-

dings consuming d bits for every node. On the other hand, sev-

eral state-of-the-art embedding algorithms output real-valued em-

bedding – generally 128 or 256 dimensional real valued vectors.

For example, storing 128 dimensional real valued vector requires

128 × 64 = 8, 192 bits which is nearly 4 times more compared to a

FastEMB embedding with d = 2200.

Require less training data:Weempirically verified that FastEMB
offers comparable performance even on less training data. We ran

FastEMB on various splits of training and test partition and notice

that its performance remains comparable whereas the performances

of other candidate algorithms deteriorate due to the decrease in

training data.

Handling streaming and evolving graphs: An advantage

of FastEMB is that it can be easily adapted for scenarios where

edges are getting added to the graph dynamically, e.g., for stream-

ing applications and evolving graphs. On the arrival of a new edge,

say between nodes i and j, FastEMB has to only update the embed-

dings of i and j and this can be done independently of the rest of

the graph. To the best of our understanding, most other embedding

algorithms require solving an optimization problem afresh and it

is unclear if they can do any better than running their entire

algorithm on the updated graph. We also noticed empirically that

the embedding computation time of FastEMB remains almost con-

stant upon inserting of new edges, whereas, for other candidate

algorithms their running times increase linearly with the addition

of edges.

Distributed setting: Both our embedding computation algo-

rithm (FastEMB) as well as the similarity estimating algorithm

(EstCN) can be easily computed using a distributed system. The

embedding of each node can also be split up across a distributed

storage system, if necessary. Once again, this is due to the simple

and bitwise operations involved in those algorithms.

1.2 Potential applications of FastEMB
In the following, we list three fundamental applications of node

embedding algorithms.

Link prediction. Link prediction is one of the fundamental

applications of node embedding. In this problem, the aim is to

predict the missing edges or the edges that are likely to form in

the future. Link prediction is at the core of many machine learn-

ing applications such as predicting missing friendship links in so-

cial networks [27], predicting links in biological interaction graphs

such as proteins-proteins interaction graphs, drugs and disease

interaction graphs [19]. Node embedding is also useful in building

recommendation systems for e.g. by affinities between users and

movies [29].

Node classification. In node classification, labels are avail-

able for only a small portion of nodes, and the aim is to predict

the labels of the remaining nodes from an available small initial

seed set of labels. Node classification is arguably the most com-

mon application of node embeddings and is used extensively in

applications such as classifying documents, videos, web pages into

different categories [15, 21, 27] and classifying proteins according

to their biological function [9].

FastEMB: Faster Succinct and Accurate Node Embedding of Large Graphs Conference’17, July 2017, Washington, DC, USA

Node clustering. In the node clustering problem, the aim is to

partition the graph into a set of clusters (sub-graphs) such that

nodes in the same cluster are more similar to each other than

those from other clusters. In a social network, such clusters are

called communities such as groups of users that belong to similar

affiliations or having similar interests. As we have the embedding

of nodes, it is possible to run generic clustering algorithms such

as k-means [2] or DBSCAN [7] and obtain the underlying clusters.

This approach could potentially be a simple, accurate and powerful

alternative to standard community detection techniques. This is due

to the fact that node embeddings correctly captures the underlying

geometric structure between nodes, and clustering groups similar

nodes together.

We empirically verify the applicability of our node embedding

algorithm FastEMB on the task of link prediction and node classifica-
tion on several real-world datasets. We obtain significant speedup

along with better performance while simultaneously achieving suc-

cinct embedding as compared to the state-of-the-art algorithms for

the purpose such as LINE [27], node2vec [9], and deepwalk [21].

We discuss this in detail Section 4.

2 BACKGROUND
Problem formulation: Let G = ⟨V , E⟩ be an unweighted undi-

rected graph with n nodes and e edges. The graph can also be

represented by the adjacency matrix A ∈ {0, 1}n×n , where Ai , j = 1

implies that there is an edge between node i and node j , and is set to
0 otherwise. We use Ai to denote the i-th row of an adjacency ma-

trix A; this |V |-dimensional binary vector represents the adjacency

vector of node i . The aim is to compute the binary embedding of the

nodes of the graphU ∈ {0, 1}n×d ,where d(d ≪ n) is the dimension

of the embedding.

It is common for embedding algorithms to try to preserve local

graph structures.

First-order proximity. The first-order proximity between nodes

i and j, denoted s
(1)

i j , captures presence of an edge between them

and is set to Ai j for unweighted graphs.

Second and higher order proximities. We will give an inductive

definition. Let s
(k)
i = [s

(k)
i1 , s

(k)
i2 , . . . , s

(k)
in] denote the k-th order prox-

imity between nodes i and the other nodes. Then the k + 1-th order

proximity s
(k+1)
i j between nodes i and j is a similarity between s

(k)
i

and s
(k)
j . A common practice is to use the inner product for comput-

ing similarity which intuitively captures the number of common

nodes as the similarity.

It is usually not the case that ensuring k-th order proximity

automatically leads to k + 1-th order proximity; hence, different

techniques target proximities of specific orders.

2.1 Related Work
Node embedding techniques can be broadly classified into the fol-

lowing three categories: (1)Factorization based, (2) Random Walk

based, and (3) Deep Learning based. We discuss them briefly as

follows. For details of these techniques, we refer the reader to the

survey papers [8, 11].

Factorization based methods. Matrix factorization based graph

embedding represent graph property (e.g., node pairwise similar-

ity) in the form of a matrix and factorize this matrix to obtain

node embedding. The problem of graph embedding is treated as

a structure-preserving dimensionality reduction problem which

assumes that the input data lies in a low dimensional manifold. The

underlying matrix that is used to represent the connections include

adjacency matrix, Laplacian matrix, node transition probability

matrix etc, [8].

Random walk based methods. In this case, the graph is explored

using different exploration and then random walks obtained are fed

as contextual information into the skip-grammodel [20]. deepwalk
preserves higher-order proximity between nodes and was the first

paper to initiate this idea. It uses DFS like search strategy to generate
random walks. Similar to deepwalk, node2vec preserves higher-

order proximity between nodes. An important difference between

these two is that node2vec employs biased random walk that pro-

vide a trade off between BFS and DFS exploration strategies. Choos-

ing the right balance between these two enables node2vec to

preserve community structure and structural equivalence between
nodes.

Deep learning based methods. Deep learning based methods em-

ployed in graphs to find low-dimensional embedding of nodes. Fac-

torization based methods and Random walk based methods have

been also attempted using deep learning by formulating the task

into an optimization problem and using gradient based methods to

get a solution. In another line of research, the problem of learning

node embedding is done using various deep learning models such as

autoencoder and CNN. Deep auto-encoders have been widely used

for dimensionality reduction [3] due to their ability to model non-

linear structure in the data. SDNE [30], and DNGR [6] exploits this

ability of deep autoencoder and learn embedding of the graph that

captures non-linear structure in graphs. Recently, several convo-

lution neural network architectures for learning over graphs have

been proposed to learn the embedding of nodes. They formulate

convolution-like operation on in the spectral domain [4, 13] and

spatial domain [14, 24].

There is some recent body of research which generates binary

embedding of nodes. We compare and contrast our results with

a few notable results in this direction follows. DNE (Discrete Net-

work Embedding) [26]learns binary node representations to speed

up node classification. They propose to jointly learn the discrete

embedding and classifier within a unified framework to improve

the compactness as well as discrimination property of network

embedding. It is a supervised binary network embedding algorithm

that requires node labels to be provided. In contrast, FastEMB is

unsupervised and is not task-specific and generates embedding

which can be used in other evaluation tasks such as Link prediction,

community detection, etc.

BANE [32] suggests binary embedding of attribute network by

joint representation learning of node links and attributes. They

formulate the problem into mixed-integer optimization and using

cyclic coordinate descent (CCD) learn the embedding of nodes. In

contrast, FastEMB computes embedding of graph considering only

edges, and our technique is algorithmic, directly computes the

binary embedding of nodes.

Conference’17, July 2017, Washington, DC, USA

Our approach follows a quite different trajectory compared to

the above approaches. Those approaches try to learn the optimal

embedding that minimizes a difference function; the difference

function captures the desideratum of accurately obtaining some

graph property (e.g., neighborhood of a node) or the effectiveness

of the embedding for a certain machine learning task. FastEMB
deviates from the norm and generates a random embedding upfront.

It leaves the heavy duty of using it effectively to estimate graph

properties to the EstCN estimation algorithm.

3 FASTEMB: FAST EMBEDDING OF NODES
In this section we explain our embedding technique “FastEMB”,
discuss the properties of a graph it seeks to preserve and explain a

few attractive features that make it suitable for embedding graphs,

especially for link prediction and node classification.

The idea behind FastEMB has its seed in the BinSketch hashing

technique and an algorithm to estimate inner products of binary

vectors from their hashes [22]. However, we heavily modify it to

obtain important theoretical guarantees.

Definition 1 (FastEMB (proposed as BinSketch earlier [22])). Let
π denote a random mapping from {1, 2, 3, . . . ,n} to {1, 2, 3, . . . ,d}.
The embedding of a node i is a d-dimensional binary vector which

is denoted σi and is defined as

j-th coordinate of σi : = (σi)j =
∨

k :π (k)=j

Aik

Algorithm 1 FastEMB embedding all nodes of a graph

Input: undirected unweighted raph G = ⟨V , E⟩

Parameter: embedding dimension d = ψ 2

√
ψ
2
ln

2

ρ

1: π ← a random mapping from {1, . . . , |V |} to {1, . . . ,d}

2: For all i = 1 . . . |V |, initialize σi as the vector

d︷ ︸︸ ︷
00 . . . 0

3: Set L← list of edges E
4: for all edge (i,k) ∈ L do
5: Determine j = π (k)
6: Set the j-th bit of σi to 1

7: end for

It is immensely easy to generate the embedding of all nodes

of G by simply processing all its edges one by one and following

Algorithm 1.

FastEMB falls under the “direct encoding approaches” in a recent

categorization of graph representationmethods [11]. The “encoding”

of a node i , represented by its adjacency vector Ai , is given by the

matrix-vector product P · ATi where P is a d × n matrix and · is a

matrix product. For FastEMB we chose P as a random sparse binary

matrixwithn ones such that there is exactly one 1 in any column; for

the matrix product we used a Boolean-logic equivalent of standard

matrix product, i.e., the i-th entry of the product of a binary matrix

M and a binary vector is computed as

∨n
k=1(Mik ∧vk). An example

illustrating this notion is given in Figure 1.

First modification to BinSketch that we make is to use a larger

embedding dimension; we set d = ψ 2

√
ψ
2
ln

2

ρ whereψ is an upper

bound on the degree of any node.

π :


1→ 1 2→ 3

3→ 2 4→ 2

5→ 3 6→ 2



100000

001101

010010

 · [010110]T = [011]T
Figure 1: FastEMB embedding of a node with edges to 2, 4, 5

is 011. The mapping π is shown on the left.

3.1 Computational complexity
The random mapping can be generated once and stored as a fast-

lookup table or can be implemented using an efficient hashing

algorithm. Suppose S denotes the space required and T denotes

the time-complexity to compute π (·); for a lookup table stored in

RAM, S = O(n logd) and T = O(1). Apart from the overhead of π ,
FastEMB only involves bit manipulations which makes it extremely

efficient. For the lemma below we are assuming that G is stored as

an adjacency list (which has asymptotically same space complexity

as that of an edge-list representation).

Lemma 2. Algorithm 1 runs in time Θ(T · |E |), returns an embed-
ding using d · |V | bits and uses an additional space S for generating
the embedding.

We are assuming that the nodes embedding too are stored in

RAM; observe that π need not be stored once the embedding of a

graph is generated. Another alternative is to not store the embed-

ding, store only π and generate σi on demand — this approach is

also efficient given the lightweight embedding algorithm.

Lemma 3. The embedding of a single node, say i , uses only d bits
and can be computed in timeO(T ·n(i))wheren(i) denotes the number
of edges of i . The internal space required is only that coming from
storing the random mapping π .

The above lemma ensures that our embedding algorithm is up-

date friendly. That is, suppose we have a dynamic graph on n nodes

whose embedding {σ1,σ2, . . . ,σn } is already computed, and now,

an edge (i, j) is added to the graph. The embedding of the updated

graph can be efficiently computed by using L = {(i, j), (j, i)} in
Line 3 of Algorithm 1.

Matrix operations are naturally adaptable to distributed settings

and so is the case for FastEMB; embedding of each node can be

computed indepedently of the others in a completely parallel and

distributed manner. In fact, tabulation hashing techniques can be

used to distribute the mapping function as well and one can even

distribute the computation on the basis of dimensions.

3.2 Bounding loss function
Now we present a few results that show that the node embedding

produced by FastEMB “preserve” similarity of two nodes; we define

the similarity of two nodes, say i and j, by the number of their

common neighbors, denoted ni , j . Note that ni , j ≤ ψ .
Our results follow from the EstCN algorithm, (described in Al-

gorithm 2) that has an important modification in Line 5 to the

BinSketch algorithm proposed earlier [22, Algorithm 1]. The latter

algorithm was designed to estimate the inner product of two binary

vectors from their sketches, and, we adapt it for estimating the num-

ber of common neighbors of any two distinct vertices from their

FastEMB: Faster Succinct and Accurate Node Embedding of Large Graphs Conference’17, July 2017, Washington, DC, USA

Algorithm 2 EstCN to estimate number of common neighbors ni , j

Input: Embeddings σi of i and σj of j
Parameter: embedding dimension d

1: Compute n̂si = |σi | ▷ |v |: number of ones in vector v
2: Compute n̂sj = |σj |

3: Compute n̂si , j = ⟨σi ,σj ⟩ ▷ ⟨u,v⟩: inner prod. of u and v

4: if n̂si , j = 0 then
5: return n̂i , j = 0

6: end if
7: Set n̂i = ln(1 −

n̂si
d)/ln(D) ▷ D denotes 1 − 1

d

8: Set n̂j = ln(1 −
n̂sj
d)/ln(D)

9: return estimated number of common neighbors

n̂i , j = n̂i + n̂j −
1

lnD ln

(
Dn̂i + Dn̂j +

n̂si , j

d
− 1

)

embeddings. Adapting a result from BinSketch [22, Theorem 1] for

our scenario, we show that the embedding produced by FastEMB
can be used, via the EstCN algorithm, to produce a tight estimate

of the number of common neighbors.

Theorem 4. Let ψ be an upper bound on the degree of G and ρ
be the desired probability of error. If the embedding dimension d is

chosen asψ 2

√
ψ
2
ln

2

ρ then EstCN ensures that its output satisfies the
following with probability at least 1 − ρ.

ni , j − 14

√
ψ

2

ln

6

ρ
< n̂i , j < ni , j + 14

√
ψ

2

ln

6

ρ

Furthermore,

(1) if ni , j > 0 then n̂i , j > 0, and

(2) ifni , j = 0 then n̂i , j = 0with probability at least 1−
√
2/(ψ ln

2

ρ).

The first part about the accuracy of EstCN is known as a feature

of the BinSketch algorithm [22, Theorem 1]; however, in that algo-

rithm the embedding dimension was set toψ
√
ψ
2
ln

2

ρ which has a

lower value. Observe that as the embedding dimension is increased,

there are even lesser chances of collision in the computation of

π (·) and higher chances of a particular bit of an encoding being

set by only one bit of a source vector. Intuitively speaking, this

will only result in better accuracy and lower probability of error in

estimation compared to the BinSketch algorithm.

Nowwe focus on the proof that, with high probability,ni , j = 0 iff

n̂i , j = 0. This is important, since otherwise, the estimated number

of common neighbors of i and j could be as large as 14

√
ψ
2
ln

6

ρ
even when i and j share no common neighbor. The enhancement

in Line 5 of Algorithm 2 is crucial to prove the second part.

Proof of second part. For the first claim observe that if ni , j >
0, then there must be some k such that Aik = Ajk = 1. Let t denote
π (k); then both (σi)t = (σj)t will be set to 1. Thus, n̂

s
i , j = ⟨σi ,σj ⟩ >

0. By way of contradiction, assume that n̂i , j = 0. But then we would

see

(from Algo. 2) n̂i + n̂j =
1

lnD ln

(
Dn̂i + Dn̂j +

n̂si , j

d
− 1

)
≡ Dn̂i · Dn̂j = Dn̂i + Dn̂j +

n̂si , j

d
− 1

≡

(
1 −

n̂si
d

) (
1 −

n̂sj

d

)
=

(
1 −

n̂si
d

)
+

(
1 −

n̂sj

d

)
+
n̂si , j

d
− 1

≡
n̂si · n̂

s
j

d2
=

n̂si , j

d

The last identity is not true in general. For example, consider a

scenario in which σi ∼ σj with the number of ones in each much

less than d ; in this case |σi | ≈ |σj | ≈ ⟨σi ,σj ⟩ and |σi | ≪ d , thus
contradicting the identity.

For proving the second claim, take any i and j such that ni , j = 0,

i.e., there is no k such that both Ai ,k = Aj ,k = 1. For the sake of

contradiction, assume that n̂i , j > 0, i.e, there is some t such that

(σi)t = (σj)t = 1; this means that there must be some k1 and k2
such that Ai ,k1 = Aj ,k2 = 1 and π (k1) = π (k2) = t . The probability
for the latter event, denoted E, is same as the probability that in a

group of n men and n women, there exists at least one pair with a

common birthday, which can be shown to be

1 −

M∑
k=1

(
D

k

)
k! SM ,k (D − k)

F /DF+M

in which SM ,k denotes Stirling’s number of the second kind [16].

Getting a closed form of this is difficult, so we show a different

technique of bounding the probability of E.
Let Ex be the event that (σi)x = (σj)x = 1. It can be shown that

E(Ex) =
(
1 − D |Ai |

)
·

(
1 − D |Aj |

)
[22, Lemma 5]. Since |Ai | and

|Aj | are both at mostψ , and, D < 1, therefore,

E(Ex) ≤ (1 − D
ψ)2 =

(
1 −

(
1 −

1

d

)ψ)
2

≤

(
ψ

d

)
2

which implies that E[
∑
x Ex] = d

(
ψ
d

)
2

=
√
2√

ψ ln
2

ρ

≪ 1

Let Eall denote
∑
x Ex ; Eall is a random variable that denotes

the number of positions x such that (σi)x = (σj)x = 1 and whose

expectation we computed above. Since E is equivalent to “Eall ≥ 1”,

we apply Markov’s inequality to derive an upper bound:

Pr[n̂i , j > 0] = Pr[E] = Pr[Eall ≥ 1] ≤ E[Eall] =

√
2√

ψ ln
2

ρ

.

□

For the rest of this section we will use the fact that EstCN esti-
mates non-zero ni , j values with a small additive error and accu-

rately identifies ni , j = 0 values (both of these happen with non-

negligible probability which we would not explicitly state for the

sake of brevity).

The above theorem allows us to accurately quantify the loss func-

tion (aka. objective function) that is used by most node embedding

Conference’17, July 2017, Washington, DC, USA

algorithm to learn the embedding [12]. Using the mean-squared-

error (MSE) to compute the loss function, we can represent it as

L =
1

T

∑
(i , j)∈T ⊆V×V

|ni , j − EstCN(i, j)|
2.

HereT represents a “training set of edges” that is traditionally used

to learn an embedding. Our proposed technique does not involve

any learning; nevertheless, for the sake of comparison we present

an explicit upper bound on L — it follows directly from Theorem 4.

Lemma 5. Using FastEMB for embedding and EstCN for estimating
node similarity, L is upper bounded by 98

ψ
2
ln

6

ρ .

3.3 Preserving higher-order similarities
Many node embedding algorithm operate on the paths, often up to

a certain length, on a graph. For example, both the random-walk

based approaches deepwalk and node2vec consider two node to

be similar if their presence in short random walks on the graph

are highly correlated. Here we show that FastEMB also “preserves”

path information in a certain manner. The key observation here

is that the square of the adjacency matrix exactly contains the ni j
values.

Observation 6. For any i, j, A2

i , j = ni , j .

This is since

n∑
k=1

AikAk j = |{k ∈ V : (i,k) ∈ E, (k, j) ∈ E}|.

This observation along with Theorem 4 implies that EstCN can
approximately compute A2

.

Lemma 7. EstCN(σi ,σj) approximately computesA2

i , j with a small
additive error. If A2

i , j = 0 EstCN(σi ,σj) outputs 0.

Next we show how to translate the above lemma to higher even
powers of A. We first show the result for the 4-th power, A4

, each

of whose entry, say A4

i , j , denotes the number of paths between i

and j using 4 nodes (and 3 edges).

We use ϵ2 to denote the small additive errormentioned in Lemma 7.

To maintain consistency of notations, we will use n̂2i , j to denote
n̂i , j ; by construction, n̂2 is symmetric.

Theorem 8. Let n̂4i , j denote the expression
∑n
k=1 n̂2i ,k · n̂2k , j

for all i, j = 1 . . .n. Then n̂4i , j approximately computes A4

i , j with a
small additive error. If A4

i , j = 0 then n̂4i , j outputs 0.

Proof. Recall that A4

i , j =
∑n
k=0A

2

i ,kA
2

k , j =
∑n
k=0A

2

i ,kA
2

j ,k ,

and further more, each term in the summation is non-negative.

Therefore, A4

i , j = 0 implies that A2

i ,k = 0 and A2

j ,k = 0 for every

k = 1 . . .n. We know from Lemma 7 that, in this case, n̂2i ,k = 0 and

n̂2j ,k = 0 for all k . Clearly, n̂4i , j = 0 too — this proves the second

part of the theorem.

For the first part, take any i, j such that A4

i , j > 0. That is,∑n
k=1A

2

i ,kA
2

j ,k > 0. From Lemma 7 we know that, for any y and

x = i, j, |n̂2x ,y − A
2

x ,y | ≤ ϵ2; using z to denote the left-hand side,

we can write n̂2x ,y = A2

x ,y + z where −ϵ2 ≤ z ≤ ϵ2 and

n̂4x ,y =
n∑

u=1
n̂2x ,u · n̂2y,u

We will use a technical result about A.

Claim 9.

∑n
u=1A

2

x ,u ≤ ψ
2.

Proof. ψ being an upper bound on the degree of any node, the

total number of length-2 paths from x is at most ψ 2
. A2

x ,u is the

total number of length-2 paths from x to u and

∑
u A

2

x ,u is the total

number of length-2 paths from x to any node, which is, therefore,

upper bounded byψ 2
. ■

The next observation is applicable to sparse graphs in general

but immensely beneficial to graphs whereψ 2 ≪ n.

Observation 10. Since the entries ofA2

x ,u are non-negative, Claim 9
implies that at most ψ 2 entries are non-zero in the x-th row of A2,
i.e, among A2

x = {A
2

x ,u : u ∈ {1, 2, . . . ,n}}. That is, at least n −ψ 2

entries of A2

x are zero.

This observation, along with Lemma 7, implies that for any x , at
mostψ 2

values in the set {n̂2x ,u : u ∈ {1, 2, . . .n}} are non-zero.

We use (
∑n
u=1)

≤ψ 2

to denote the fact that in a summation with n

summands, at mostψ 2
terms are non-zero. Getting back to proving

the theorem,

n̂4x ,y =(
n∑

u=1
)≤ψ

2

(A2

x ,u + z) · (A
2

y,u + z)

=

n∑
u=1

A2

x ,u · A
2

y,u + z ·
n∑

u=1
A2

x ,u

+ z ·
n∑

u=1
A2

y,u + (

n∑
u=1
)≤ψ

2

z2

=A4

x ,y + 2zψ
2 + z2ψ 2

(Using Claim 9)

Thus we get��n̂4x ,y −A4

x ,y
�� = ��

2z + z2
��ψ 2 =

{
3|z |ψ 2

if |z | < 2

2z2ψ 2
if |z | ≥ 2

The additive error ϵ2 for n̂
2

x ,y is Õ(
√
ψ) from Theorem 4 (here Õ()

hides log(1/ρ) factors); therefore, we get the additive error for n̂4x ,y
asψ 3

. □

Theorem 8 can be generalized to show that entries of A2
t
, for

t ≥ 1, can be approximated with additive error Õ(poly(ψ)). Since
any even power of A can be written as a product of A raised to

a power of 2, we have established that our FastEMB embedding

effectively preserves all even power of the adjacency matrix A, and
therefore, can approximate information about paths of even lengths

in G.

4 EXPERIMENTS
Hardware description. We performed most of our experiments on

a laptop with the following configuration: CPU: Intel(R) Core(TM)

i7-4710MQ CPU@ 2.50GHz x 8; Memory: 7.5 GB; OS: Ubuntu 18.04;

OS type 64-bits. We performed our experiments on the Gowalla
dataset[17] on a server with the following configuration: CPU:

product: Intel(R) Xeon(R) CPUE5-2650 v3@2.30GHz; size: 1200MHz;

capacity: 3GHz; width: 64 bits; memory: 94GiB; width: 64 bits.

FastEMB: Faster Succinct and Accurate Node Embedding of Large Graphs Conference’17, July 2017, Washington, DC, USA

Candidate algorithms: Weused the source code of BinSketch [22]
to implement out embedding and estimating algorithms; we ob-

tained the code from the authors of BinSketch but we did not

modify the code to add Line 5 of Algorithm 2 — not adding the line

only makes our implementation slower and less accurate.

We evaluated our approach against several state-of-the-art al-

gorithms such as node2vec [9], deepwalk [21], and LINE [27]. For

node2vec, we used the implementation provided by its authors
1
.

We did a grid search over its parameters p and q ∈ [0.25, 0.5, 1, 2, 4].
This is equivalent to running 25 different experiments. Here we

only report the result for the optimum choice of p and q. deepwalk
is a special case of node2vec when p = q = 1 [9], so the earlier

node2vec implementation was used here with the specified pa-

rameters. For LINE, we used a standard implementation available

online
2
and performed experiments considering both first and sec-

ond order proximity — the best one is reported here. For all these

three approaches, we compute the embedding in both 128 and 256

dimensions, and report the best result here.

We evaluated the effectiveness of the embeddings obtained from

these algorithms for two fundamental social network applications,

node classification and link prediction.

4.1 Link Prediction
In the link prediction problemwe are given a network with a certain

fraction of missing edges and the task is to predict these missing

edges. It can be recasted as a classification problem where the goal

is to train a classifier that, given a pair of nodes, outputs if there is

an edge between them or not.

Datasets: We ran experiments on the following four datasets.

Gowalla [17]: Gowalla is a location-based social networkingweb-
site where users share their locations by checking-in. The friendship

network is undirected and was collected using their public API. The

dataset consists of 196, 591 nodes and 950, 327 edges. The dataset

consist of a total of 6, 442, 890 check-ins of these users over the

period of Feb. 2009 - Oct. 2010.

Enron Emails Network: [17]: Enron email communication

network covers all the email communication within a dataset of

around half million emails. In this dataset, nodes of the network

are email addresses and if an address i sent at least one email to

address j, the graph contains an undirected edge from i to j. The
datasets contains 36, 692 nodes and 1, 83, 831 edges.

BlogCatalog [33]: BlogCatalog is the social blog directorywhich
manages the bloggers and their blogs. The dataset contains the

friendship network crawled and group memberships. Here, nodes

represent users, and edges represent a friendship relation between

any two users. The network has 10, 312 nodes and 333, 983 edges.

Facebook [17]: In the Facebook network, nodes represent users,

and edges represent a friendship relation between any two users.

The network has 4, 039 nodes and 88, 234 edges.

Methodology: For the purpose of classification, we generate a
labeled dataset of edges by splitting a dataset into training and

testing partition in 70 − 30 ratio. These will serve as our positive

1
https://github.com/aditya-grover/node2vec

2
https://github.com/shenweichen/GraphEmbedding

Table 1: Datasets for Link Prediction

Datasets Nodes Edges Sparsity

Gowalla 196,591 9,50,327 1,4730

Enron Emails Network 36,692 1,83,831 1,383

BlogCatalog 10,312 333,983 3992

Facebook 4,039 88,234 1045

training and testing samples. To this purpose, we randomly sample

30% of edges and remove them. During the removal of edges, we

make sure that the residual graph obtained after edge removal

remains connected. If the sampled edges don’t ensure this, we

choose a different edge. We learn the embedding of the graph using

all the candidate algorithms on our positive training samples. We

now generate missing edges equal in number to the original dataset.

Missing edges are edges that are absent in the graph. We split the

generatedmissing edges into training and testing partition in 70−30

ratio. These will serve as our negative training and testing samples.

We compute inner product for all the edges and label them 0 or 1

depending on whether it is a missing edge or an actual edge.

We combine positive training samples and negative training

samples to form our final training data.We train a logistic regression

on the final training data. For testing, we combine positive testing

samples and negative testing samples to form final testing data. In

order to test the classifier model, we calculate inner product on the

final testing data using the embeddings created earlier. We consider

auc-roc score as our evaluation metric.

Empirical Results and Insights: We record the performances of all

the candidate algorithms on the datasets mentioned above and sum-

marise the comparison in Tables 2, 3, 4, 5. We observed significant

speed up in embedding computation time as expected, along with

better accuracy as compared to the other candidate algorithms.

For example, on the Gowalla dataset, we achieved 731 times

speedup (using 2200 dimensions for FastEMB) as compared to node2vec,
661 times speedup as compared to deepwalk, and 6751 times speedup

as compared to LINE, while simultaneously offering about 8% im-

provement in AUC-ROC and 3.72 times lesser space as compared to

these algorithms. The space advantage arrives primarily due to the

use of binary vectors instead of real-valued vectors each of whose

dimensions require a lot many bits, 64 on our system, compared to

binary vectors. We obtain similar results for the other datasets.

4.2 Node Classification
For node classification, every node is assigned one or more labels

from a given set. During the training period, we observe a certain

fraction of nodes and their labels. The aim is to predict the labels for

the remaining nodes. We split the dataset into training and testing

partition in a 70 − 30 ratio and use logistic regression as classifier.

Datasets: We used three citation datasets — Cora, Citeseer and

Pubmed [25] for the experiments. In these datasets, citation relation-

ships are viewed as directed edges. Attributes associated with nodes

are extracted from the title and the abstract of the each article and

are presented as sparse bag-of-word vectors, after removing the

stop words and low-frequency words. Each article in these datasets

has only one label representing the class it belong to.

https://github.com/aditya-grover/node2vec
https://github.com/shenweichen/GraphEmbedding

Conference’17, July 2017, Washington, DC, USA

Table 2: Link Prediction Result on Gowalla network

Algorithm Dimension AUC ROC Embedding

Score Computation time(s)

FastEMB

2200 83.53 10.7

2400 83.89 11.07

2600 83.04 11.58

2800 84.38 12.53

3000 84.7 15.48

3200 84.88 24.07

3400 84.44 30.53

3600 84.92 32.87

3800 85.08 33.76

4000 85.21 35.78

node2vec 128 75.48 7827

(p = 4,q = 4)

deepwalk 128 74.79 7075

LINE (First Order) 128 75.33 72242

Table 3: Link Prediction Result on Enron email network

Algorithm Dimension AUC ROC Embedding

Score Computation time(s)

FastEMB

400 86.96 0.66

600 91.25 0.78

800 92.48 0.87

1000 92.88 0.99

1200 93.57 2.7

1400 93.79 3.46

1600 94.02 3.81

node2vec 128 67.13 560

(p = 4,q = 4)

deepwalk 128 66.7 515.36

LINE (First Order) 128 75.87 4216

Table 4: Link Prediction Result on BlogCatalog dataset

Algorithm Dimension AUC ROC Embedding

Score Computation time(s)

FastEMB

800 83.71 0.62

1000 84.38 0.67

1200 84.5 0.71

1400 84.97 0.74

1600 85.02 0.77

1800 85.3 0.8

2000 85.36 0.83

2200 85.39 0.87

2400 85.48 1.29

node2vec 128 63.12 979.02

(p = 4,q = 4)

deepwalk 128 61 774.31

LINE (First Order) 128 66 2379

We also considered IMDB-BINARY [23, 31] for our experiments.

It is a movie collaboration dataset where actor/actress and genre

information of different movies on IMDB are collected. Nodes rep-

resent actors/actresses, and an edge between them signifies a joint

appearance in some movie. Collaboration graphs is generated on

the “action” and the “romance” genres and derived ego-networks

Table 5: Link Prediction Result on Facebook network

Algorithm Dimension AUC ROC Embedding

Score Computation time(s)

FastEMB

400 92.29 0.15

600 93.34 0.16

800 93.66 0.18

1000 93.85 0.20

1200 93.81 0.20

1400 93.89 0.23

1600 93.96 0.22

1800 94.06 0.23

node2vec 128 93.64 63.98

(p = 0.25,q = 4)

deepwalk 128 93.10 54.39

LINE (First Order) 128 83.41 250.25

Table 6: Datasets for Node Classification

Datasets Nodes Edges Classes Features Sparsity

Cora 2,708 5,429 7 1,433 5

Citeseer 3.327 4,732 6 3,703 26

Pubmed 19,717 44,338 3 500 171

IMDB 19,773 3,86,124 1000 1024 540

for each actor/actress. A movie can belong to both genres at the

same time, therefore movies from romance genre are discarded if

they are already included in the action genre. Each ego-network is

labeled with the genre graph it belongs to. The task is then simply

to identify which genre an ego-network graph belongs to.

Statistics of these datasets, including number of nodes, num-

ber of edges, number of classes (categories), and the dimension of

attributes are summarised in Table 6.

Empirical Results and Insights: We run the benchmarks of the

all the candidate algorithms on the datasets mentioned above and

summarise the comparison in Tables 7, 8, 9, 10. Here again, we

obtained significant speed up in embedding computation time while

simultaneously offering comparable accuracy with respect to other

candidate algorithms. Moreover, our embedding is space efficient

and requires significantly less number of bits.

4.3 Performance of FastEMB on varying
sparsity and training sample size

We now discuss the performance of FastEMB in comparison with

other candidate algorithms by varying sparsity of a dataset and

varying training sample size. We discuss our experimental setup

as follows. We split the datasets into various ratios of training

and test partitions. We start with 50% training and 50% test par-

tition and increased it upto 90% training and 10% test partition.

We increase the training partition at the interval of 10%. We ran

the Link Prediction experiment on these partitions and observed

the AUC-ROC score and the embedding computation time. We

ran LINE, node2vec, deepwalk on 128 dimensional embedding,

and FastEMB on {400, 600, 1000, 1200, 1400, 1600, 1800, 2000, 2400}
dimension. Results of our experiments on the Enron email and

BlogCatalog datasets are summarised in Figures 2 and 3.

FastEMB: Faster Succinct and Accurate Node Embedding of Large Graphs Conference’17, July 2017, Washington, DC, USA

Table 7: Node Classification Result on Citeseer dataset

Algorithm Dimension Micro F1 Macro F1 Embedding

Score Score Computation time(s)

FastEMB

10 28.67 21.25 0.018

30 27.36 20.29 0.019

70 31.18 24.15 0.023

100 34.30 28.42 0.024

150 37.62 31.14 0.026

200 36.51 28.98 0.035

300 34.7 28.57 0.037

400 41.04 35.54 0.043

600 41.85 36.23 0.049

800 43.96 37.7 0.068

1000 44.16 38.79 0.076

1200 47.78 41.67 0.087

1400 45.47 40.97 0.086

1600 45.57 40.77 0.105

1800 46.78 40.77 0.106

2000 48.28 43.16 0.112

node2vec 128 29.77 21.9 1.75

(p = 0.25,q = 4)

deepwalk 128 25.05 17.06 1.77

LINE (First Order) 128 36.72 32.72 17.14

Table 8: Node Classification Result on Cora dataset

Algorithm Dimension Micro F1 Macro F1 Embedding

Score Score Computation time(s)

FastEMB

10 31.85 17.79 0.017

30 37.76 28.43 0.017

70 41.82 35.53 0.019

100 43.91 39.47 0.02

150 49.44 44.75 0.023

200 51.78 47.87 0.024

300 56.7 54.49 0.029

350 54.98 52.44 0.031

400 56.21 53.26 0.039

600 60.14 58.56 0.042

800 62.11 60.23 0.047

1000 60.76 58.41 0.055

2000 63.59 61.64 0.094

2500 65.55 64.67 0.10

3000 64.45 63.18 0.124

node2vec 128 52.76 41.31 1.72

(p = 0.25,q = 4)

deepwalk 128 44.15 28.64 1.49

LINE(First Order) 128 56.33 53.51 15.72

Insight. We notice that the AUC-ROC score of FastEMB always

remains higher than the other candidate algorithms. Furthermore,

there is slight increase in the AUC-ROC score of FastEMB with

the increase of training data. This implies that even on less train-

ing data FastEMB offers significantly better performance. We now

comment on the behaviour of all the candidate algorithms on

embedding computation time with the increase of density of the

graph. It is obvious that with the increase of training partition

size the dataset becomes more denser. We observe that the embed-

ding computation time of FastEMB always remains constant, and

is significantly less than the other candidate algorithms. Whereas

Table 9: Node Classification Result on PubMed dataset

Algorithm Dimension Micro F1 Macro F1 Embedding

Score Score Computation time(s)

FastEMB

10 43.89 32.65 0.15

50 45.16 34.69 0.29

100 47.71 39.27 0.20

200 50.62 43.12 0.23

400 54.95 50.47 0.29

600 57.606 54.26 0.42

800 59.77 56.14 0.83

1000 63.28 59.63 1.23

1200 62.69 59.69 1.91

1400 64.4 61.52 1.68

1600 67.25 65.07 2.20

1800 66.9 64.41 2.51

2000 68.27 65.59 2.5

node2vec 128 43.2 31.34 5.88

(p = 0.25,q = 4)

deepwalk 128 42.46 35.15 5.78

LINE (First Order) 128 58.19 53.81 840.25

Table 10: Node Classification Result on IMDB dataset

Algorithm Dimension Micro F1 Macro F1 Embedding

Score Score Computation time(s)

FastEMB

100 40.37 39.78 0.72

200 46.91 46.48 0.76

400 55.2 55 0.86

600 61.48 61.34 0.91

800 67.37 67.3 0.98

1000 70.7 70.58 1.04

1200 74.63 74.63 1.12

1400 78 77.97 1.26

1600 80 79.97 2.94

1800 82.47 82.49 3.30

2000 83.88 83.85 3.89

2200 85.71 85.74 4.10

2400 86.86 86.89 4.02

2600 88.06 88.07 4.88

2800 88.64 88.6 5.56

3000 89.76 89.81 6.32

node2vec 128 51.91 51.6 117

(p = 4,q = 4)

deepwalk 128 50.68 50.34 118

LINE (First Order) 128 41.25 40.56 1850

for as candidate algorithms it become slower with the increase of

density of the graphs.

Comment on Space Efficiency of FastEMB. In all our experiments,

we ran FastEMB on various values of dimensions, and other candi-

date algorithms on 128, 256 dimensions. Our embedding are binary

vectors while for others candidates it is real-valued vectors. We

would like to comment that our embedding is much more space

efficient than others. A 128 dimensional real valued vectors requires

8, 192 bits while for FastEMB the embedding dimension is varies

from 10 to 3000 dimensions and offers about 81× to 2.7× space sav-

ing. Across all the experiments, we ran FastEMB on various values

of embedding dimensions and in most of the cases we noticed even

Conference’17, July 2017, Washington, DC, USA

Table 11: Comparing speedup and space overhead

Datasets Algorithm Dimension Speedup in Space

embedding saving

Gowalla node2vec 2200 731 × 3.72 ×

deepwalk 2200 661 × 3.72 ×

LINE 2200 6754 × 3.72 ×

ENRON node2vec 400 848 × 20.48×

deepwalk 400 780 × 20.48×

LINE 400 6387 × 20.48×

BlogCatalog node2vec 800 1579 × 10.24×

deepwalk 800 1248× 10.24×

LINE 800 3837 × 10.24×

Facebook node2vec 400 426.53 × 20.48 ×

deepwalk 400 362.6 × 20.48 ×

LINE 400 1668.33 × 20.48×

PubMed node2vec 10 39.2 × 819.2×

deepwalk 10 38.53 × 819.2 ×

LINE 10 5601.66 × 819.2×

IMDB node2vec 1000 112.5 × 8.19×

deepwalk 1000 113.46 × 8.19 ×

LINE 1000 1778.84 × 8.19×

a very small embedding dimension suffices to offer comparable

performance while simultaneously offering significant speedup in

embedding computation time along with space savings.

Figure 2: Comparison of AUC-ROC Score and Embedding
computation time on Enron dataset.

Figure 3: Comparison of AUC-ROC Score and Embedding
computation time on BlogCatalog dataset.

We summarize the speed up and space overhead of the other

candidate algorithms with FastEMB in Table 11.

5 CONCLUSION AND OPEN QUESTIONS
In this work, we propose FastEMB which takes a large scale graph

as input and outputs succinct low-dimensional binary embedding

corresponding to each node. A major advantage of FastEMB is that

it is extremely fast and computes the embedding of a large scale

graph in almost real time. FastEMB does not have strong hardware

requirements for embedding computation and can generate em-

bedding of large scale graph having a few million edges within

a few seconds on a laptop having 8GB memory. Another advan-

tage of our work is that is can be easily adapted in a streaming

framework where edges are getting added/deleted in the graph. We

evaluate the performance of FastEMB on the task of node classifica-
tion and link prediction and noticed that FastEMB offers significant

speed up in embedding computation time while offering compa-

rable performance with respect to the state-of-the-art algorithms

of the purpose such as node2vec, deepwalk, LINE. For exam-

ple: in link prediction task on Gowalla dataset, we obtained 731

times speedup as compared to node2vec, 661 times as compared to

DeepWalk, and 6751 times as compared to LINE, while simultane-

ously offering about 8% improvement in accuracy and taking 3.72

times less space as compared to these algorithms. Our work leaves

the possibility of several open questions: a) extending our result

for computing embedding of hyper-graphs; b) further improving

the accuracy of downstream evaluation tasks potentially incorpo-

rating some additional features into FastEMB. Given the simplicity

of FastEMB we hope that it can be easily adapted in practice.

FastEMB: Faster Succinct and Accurate Node Embedding of Large Graphs Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM

Comput. Surv., 40(1):1:1–1:39, February 2008.

[2] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful

seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07, pages 1027–1035, Philadelphia, PA, USA, 2007.

Society for Industrial and Applied Mathematics.

[3] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning:

A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–
1828, 2013.

[4] Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral networks

and locally connected networks on graphs. 12 2013.

[5] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep. pages 891–900, 10 2015.

[6] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning

graph representations. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, pages 1145–1152. AAAI Press, 2016.

[7] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters a density-based algorithm for discovering

clusters in large spatial databases with noise. In Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Mining, KDD’96, pages
226–231. AAAI Press, 1996.

[8] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications,

and performance: A survey. Knowl.-Based Syst., 151:78–94, 2018.
[9] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-

works. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016, pages 855–864, 2016.

[10] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation

learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, pages 1025–1035, USA, 2017.
Curran Associates Inc.

[11] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on

graphs: Methods and applications. IEEE Data Eng. Bull., 40(3):52–74, 2017.
[12] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on

graphs: Methods and applications. IEEE Data Eng. Bull., 40:52–74, 2017.
[13] Mikael Henaff, Joan Bruna, and Yann Lecun. Deep convolutional networks on

graph-structured data. 06 2015.

[14] Thomas Kipf and Max Welling. Semi-supervised classification with graph convo-

lutional networks. 09 2016.

[15] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-

volutional networks. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

[16] leonbloy. Probability of at least one male and one female sharing the same

birthday, Mar 1963.

[17] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data, June 2014.

[18] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional

recurrent neural network: Data-driven traffic forecasting. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April

30 - May 3, 2018, Conference Track Proceedings, 2018.
[19] Qing Lu and Lise Getoor. Link-based classification. In Proceedings of the Twen-

tieth International Conference on International Conference on Machine Learning,
ICML’03, pages 496–503. AAAI Press, 2003.

[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In

C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems 26, pages 3111–3119.
Curran Associates, Inc., 2013.

[21] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of

social representations. In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 -
27, 2014, pages 701–710, 2014.

[22] Rameshwar Pratap, Debajyoti Bera, and Karthik Revanuru. Efficient sketching

algorithm for sparse binary data. CoRR, abs/1910.04658, 2019.
[23] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with inter-

active graph analytics and visualization. In AAAI, 2015.
[24] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. The graph neural network model. Trans. Neur. Netw., 20(1):61–80,
January 2009.

[25] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and

Tina Eliassi-Rad. Collective classification in network data. https://linqs.soe.ucsc.

edu/data, 2008.

[26] Xiaobo Shen, Shirui Pan, Weiwei Liu, Yew-Soon Ong, and Quan-Sen Sun. Dis-

crete network embedding. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden., pages 3549–3555, 2018.

[27] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

LINE: large-scale information network embedding. In Proceedings of the 24th
International Conference on World Wide Web, WWW 2015, Florence, Italy, May
18-22, 2015, pages 1067–1077, 2015.

[28] Lei Tang and Huan Liu. Relational learning via latent social dimensions. In

Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’09, pages 817–826, New York, NY, USA, 2009.

ACM.

[29] Rianne van den Berg, Thomas N. Kipf, and Max Welling. Graph convolutional

matrix completion. CoRR, abs/1706.02263, 2017.
[30] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding.

In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 1225–1234, New York, NY, USA, 2016.

ACM.

[31] Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Sydney, NSW, Australia, August 10-13, 2015, pages 1365–1374, 2015.

[32] Hong Yang, Shirui Pan, Peng Zhang, Ling Chen, Defu Lian, and Chengqi Zhang.

Binarized attributed network embedding. In IEEE International Conference on
Data Mining, ICDM 2018, Singapore, November 17-20, 2018, pages 1476–1481, 2018.

[33] R. Zafarani and H. Liu. Social computing data repository at ASU. http://www.

blogcatalog.com/, 2009.

http://snap.stanford.edu/data
https://linqs.soe.ucsc.edu/data
https://linqs.soe.ucsc.edu/data
http://www.blogcatalog.com/
http://www.blogcatalog.com/

	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Potential applications of FastEMB

	2 Background
	2.1 Related Work

	3 FastEMB: Fast Embedding of Nodes
	3.1 Computational complexity
	3.2 Bounding loss function
	3.3 Preserving higher-order similarities

	4 Experiments
	4.1 Link Prediction
	4.2 Node Classification
	4.3 Performance of FastEMB on varying sparsity and training sample size

	5 Conclusion and open questions
	References

