Neural Machine Translation of Indian Languages

Karthik Revanuru Kaushik Turlapty Shrisha Rao

IIIT Bangalore

ACM Compute, 2017

Karthik Revanuru, Kaushik Turlapty, Shrisha Neural Machine Translation of Indian Langua, ACM Compute, 2017 1 / 21

- Introduction
- Neural Networks(Basic Idea)
- Machine Translation using Neural Networks
- Results
- Conclusion

2 / 21

- Machine Translation (MT) is translation of a natural language content from one language to the other.
- It is one of the key areas of Natural language processing (NLP).
- Machine translation is very important to break the language barrier among the people.
- The goal is to develop an automated system without any kind of human intervention.

 Takes in a list of numbers and calculates a result (based on previous training). Input

• Tweaked version of a neural network where the previous state of the neural network is one of the inputs to the next calculation.

ACM Compute, 2017 5 / 21

 This trick allows neural networks to learn patterns in a sequence of data.

 This trick allows neural networks to learn patterns in a sequence of data.

 This trick allows neural networks to learn patterns in a sequence of data.

 This trick allows neural networks to learn patterns in a sequence of data.

 This trick allows neural networks to learn patterns in a sequence of data.

 This trick allows neural networks to learn patterns in a sequence of data.

 This trick allows neural networks to learn patterns in a sequence of data.

 This trick allows neural networks to learn patterns in a sequence of data.

 This trick allows neural networks to learn patterns in a sequence of data.

 This trick allows neural networks to learn patterns in a sequence of data.

 This trick allows neural networks to learn patterns in a sequence of data.

 This trick allows neural networks to learn patterns in a sequence of data.

- We'll feed the sentence into the RNN, one word at time.
- The final result after the last word is processed will be the values that represent the entire sentence.

- We'll feed the sentence into the RNN, one word at time.
- The final result after the last word is processed will be the values that represent the entire sentence.

- We'll feed the sentence into the RNN, one word at time.
- The final result after the last word is processed will be the values that represent the entire sentence.

- We'll feed the sentence into the RNN, one word at time.
- The final result after the last word is processed will be the values that represent the entire sentence.

- We'll feed the sentence into the RNN, one word at time.
- The final result after the last word is processed will be the values that represent the entire sentence.

- We'll feed the sentence into the RNN, one word at time.
- The final result after the last word is processed will be the values that represent the entire sentence.

- We'll feed the sentence into the RNN, one word at time.
- The final result after the last word is processed will be the values that represent the entire sentence.

- We'll feed the sentence into the RNN, one word at time.
- The final result after the last word is processed will be the values that represent the entire sentence.

- We'll feed the sentence into the RNN, one word at time.
- The final result after the last word is processed will be the values that represent the entire sentence.

- We know how to use an RNN to encode a sentence into a set of unique numbers.
- What if we take two RNNs and hooked them up end-to-end ?

-

э

- What if (and heres the big idea!) we could train the second RNN to decode the sentence into some-other language instead of English ?
- We could use our parallel corpora training data to train it.

- ∢ ศ⊒ ▶

-

- The Clouds are in the Sky
- I grew up in AP. I speak fluent Telugu.
- Long Short Term Memory LSTM

• Dataset¹ Description

Training data = 73180Validation data = 10000Test data = 10000

• RNN (RNN_Size = 500, layers = 2, SGD) BLEU score = 9.90

¹Dataset is provided by TDIL DC

Karthik Revanuru, Kaushik Turlapty, Shrisha Neural Machine Translation of Indian Langua

Dataset Description

Training data = 18000Validation data = 4556Test data = 2000

RNN (RNN_Size = 500, layers = 2, SGD, 50 epochs) BLEU score = 9.06

Bidirectional encoder

< □ > < ---->

- ∢ ≣ →

3

• Input of a layer is element-wise added to the output before feeding to the next layer.

- Motivation Problem of Long Term dependencies
- **Basic Idea** Instead of single vector representation for each sentence keep around vectors for every word in the input sentence.

Dataset Description

Training data = 73180Validation data = 10000Test data = 10000

• BRNN with Residual Connections and Attention Model BLEU score = 14.6

Model	BLEU Score
2 Layer LSTM + SGD	12.67
4 Layer LSTM $+$ SGD	4.94
2 Layer (Bi-dir) LSTM +SGD + Res + Attention	13.89
4 layers (Bi-dir) LSTM +SGD+ Res + Attention	14.16

Language Pair	Our Best Model	Google Translate ²
Punjabi-Hindi	46.47	17.46
Gujarati-Hindi	35.69	4.87
Urdu-Hindi	22.47	5.79
Tamil-Hindi	7.56	2.65

Table: Comparison with Google Translate

²Accessed on 15-06-2017

Karthik Revanuru, Kaushik Turlapty, Shrisha Neural Machine Translation of Indian Langua

- This is the first work to apply NMT on Indian Language Pairs.
- We have trained our models using eight different configurations, and evaluated them using five different standard evaluation metrics.
- Our models are easier to train than deeper models, as they have a simpler architecture, require fewer resources, and take less time.
- Our models have consistently outperformed Google Translate.

- Cloud based applications.
- Federated learning Offline Translation.
- Zero Shot Translation.

Thank you !

3

э