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ABSTRACT

Neural Machine Translation (NMT) is a new technique for
machine translation that has led to remarkable improve-
ments compared to rule-based and statistical machine trans-
lation (SMT) techniques, by overcoming many of the weak-
nesses in the conventional techniques. We study and apply
NMT techniques to create a system with multiple models
which we then apply for six Indian language pairs. We com-
pare the performances of our NMT models with our sys-
tem using automatic evaluation metrics such as UNK Count,
METEOR, F-Measure, and BLEU. We find that NMT tech-
niques are very effective for machine translations of Indian
language pairs. We then demonstrate that we can achieve
good accuracy even using a shallow network; on comparing
the performance of Google Translate on our test dataset, our
best model outperformed Google Translate by a margin of
17 BLEU points on Urdu-Hindi, 29 BLEU points on Punjabi-
Hindi, and 30 BLEU points on Gujarati-Hindi translations.
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1 INTRODUCTION

India is a multilingual country with people from different
states speaking in different regional languages. Communica-
tion and information exchange between people is necessary
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not only for business purposes but also for the people to
share feelings, thoughts, opinions and facts. As it is not feasi-
ble to have human translators everywhere, we need effective
approaches which do this job with as little human effort as
possible.

Machine Translation (MT) can be described as the task
of translating text or speech from one natural language to
another, with as little human effort as possible. MT aims to
achieve quality translations which are semantically equiva-
lent to the source sentence and syntactically correct in the
target language. MT performs simple substitution of words
on a ground level, but that alone is not enough, as recogni-
tion of whole phrases and their closest counterparts in the
target language are necessary.

Work on MT dates back to as early as the 1950s [16], and
has progressed rapidly since the 1990s due to the availability
of storage, computing power and also large bilingual and
multi-lingual text corpora.

Since then, different approaches have been proposed for
MT: rule based translation [9, 27], knowledge based transla-
tion [26, 29], corpus based translation [24] and hybrid trans-
lation [22]. Each of these approaches has its own advantages
and disadvantages. Statistical Machine Translation (SMT) [14]
(which can be subcategorized under corpus based transla-
tion) was widely used as it produced better results compared
to other methods. SMT also requires little human interven-
tion, as it learns everything from the parallel corpus. Neural
networks [1] in MT are also popular lately—a novel tech-
nique in MT called Neural Machine Translation [25] (NMT)
has emerged.

Though a lot of work has been done on MT, it is limited
to European and other foreign languages. Little has been
done on Indian languages. We find no work giving bench-
marks on Indian language pairs, which makes us the first
to venture into this uncharted territory. There are bench-
marks available for English-French and English-German on
WMT’14 datasets (which are publicly available) with about
38.95 and 24.67 BLEU score respectively [30].

We have worked on six language pairs: Telugu-Hindi, Konkani-

Hindi, Gujarati-Hindi, Punjabi-Hindi, Tamil-Hindi and Urdu-
Hindi on datasets obtained from Indian Language Technol-
ogy Proliferation and Deployment Center (TDIL-DC), C-
DAC!. We have also evaluated our translations with their
reference translations, to estimate the quality of our work
using a widely used metric called BLEU [20]. We have also

Thttp://tdil-dc.in
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detailed and evaluated on other automatic evaluation met-
rics like Unknown Word Count (UNK), Word Error Rate
(WER) [3], F-Measure [5] and METEOR [15].

The architecture of our system is relatively simple, with
two bi-directional Long Short Term Memory (LSTM) [23]
as encoders and two LSTMs [11] as decoders. On top of
both encoders we have added residual connections [30], and
an attention mechanism [17] on top of the decoder. We have
experimented with this shallow network system on the given
Indian language pairs, and observed how they perform. We
have used GPU computing to train our system as it acceler-
ates the training process. We have also experimented with
different variations of these models on the various language
pairs.

‘We demonstrate with our system that good accuracy can
be achieved on Indian language pairs even using a shallow
network. It is also easier to train such a network as it requires
fewer resources, and takes relatively less time to train, com-
pared to deeper networks. In comparison with Google Trans-
lateQ, our system achieves a BLEU score of 46.47 between
Punjabi and Hindi language pair on a dataset from TDIL-
DC whereas Google Translate scores 17.46 on the same dataset.
We get similar results for other language pairs, where also our
network outperforms Google Translate by significant mar-
gins.

In summary, the following are the novel accomplishments
of our work:

e This is the first work to have applied Neural Machine
Translation techniques on Indian language pairs. (Lan-
guage translation work on Indian languages—by any

method—is quite sparse; e.g., there is no tool for Konkani-

Hindi, which is one of our language pairs.)

e We have trained our models using eight different con-
figurations, and evaluated them using five different
standard evaluation metrics.

e Our models are easier to train than deeper models,
as they have a simpler architecture, require fewer re-
sources, and take less time.

e We have demonstrated with our work that good accu-
racy can be achieved even with shallow networks, on
Indian language pairs.

e Our best model outperformed Google Translate by a
margin of 17 BLEU score on Urdu-Hindi, 29 BLEU
score on Punjabi-Hindi and 30 BLEU score on Gujarati-
Hindi translations.

The rest of the paper is organized as follows. In Section 2
we have outlined different NMT concepts we have studied,
followed by the architecture used. In Section 3 we give an
overview of the experiments conducted, describing details
like setup, dataset, pre-processing, and training aspects. In
Section 4 we describe different evaluation metrics we have
used. Section 5 gives results with some sample translations,
then compare our different models on the Telugu-Hindi dataset
using several evaluation metrics, then extend this to other
language pairs. We also compare different models based on

2https://translate.google.com/
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training time, to show that our models are easier to train.
Subsequently we compare our models with Google Trans-
late to gauge the quality of their outcomes. In Section 6 we
present conclusion and future ideas for work.

All the code that has been used in our work, and some
documentation, can be found online.?

2 NEURAL MACHINE TRANSLATION

Neural Machine Translation is an approach to MT that uses
a neural network which directly models the conditional prob-
ability of translating a given source sentence to a target sen-
tence.

2.1 Simple Encoder-Decoder Architecture

A basic network in NMT consists of an encoder and decoder.
The natural choice for encoder and decoder is a Recurrent
Neural Network (RNN) [11] because RNNs can easily map
sequences to sequences when the alignment between inputs
and outputs is known ahead of time [25]. RNN is a natural
extension of feed forward neural networks with the difference
being RNN has a memory, i.e., it takes into account previous
outputs.

Let X and Y be the source and target sentence pairs re-
spectively. The encoder RNN converts the source sentence
r1,x2...Tyn into vectors of fixed dimensions. The decoder out-
puts one word at a time using conditional probability

PY|X) = P(Y|X1,X2,X3,...., Xos)

Here X1, .....X 5/ in the equation are the fixed size vectors en-
coded by the encoder. Using chain rule the above equation
is converted to the equation below where, while decoding,
next word is predicted using symbols that are predicted till
now and source sentence vectors. The above expression then
becomes

P(Y|X) = P(yilyo,y1,92, - ¥i—1; X1, X2, X3, ..., Xr)

Each term in the distribution is represented with a soft-
max? over all the words in the vocabulary.

2.1.1 Long Term Dependency Problem

Though RNNs work well in theory, there are problems
while training them with long sentences because RNNs have
a “Long Term Dependency Problem.” This can be explained
with a simple example. If the given task is to predict the
next word in a sentence using a language model, then in a
sentence like “Stars are in the ,” sky is the obvious
choice to fill in the blank, and we do not need any further
context as the gap between the relevant information and
its place is small. But in sentences like “I am from Andhra
Pradesh. I speak fluent ,” it is not as straight-forward,
because from recent information we can only deduce that

Shttps://github.com/KarthikRevanuru/NMT-of-Indian- Languages
Softmax is the last layer of a neural network, which gives the proba-
bility for each of the class labels.
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missing word should be name of a language, but there can
be multiple choices (e.g., Telugu, Urdu, Hindi). If we want
to infer any further, i.e., if we want to narrow down the
possibilities, we need further context. This problem is felt
when the gap between the relevant information and the place

......................................

that it is needed is not small, and it is entirely possible to L-Ia—.‘:fzr
have gaps much bigger than in this example. In practice, it
is difficult for RNNs to learn these dependencies. " rirrrroroorrrrrrsrs ooy
2.1.2 Long Short Term Memory (LSTM)
A variant of RNN called Long Short Term Memory (LSTM) [11]
is known to learn problems with long range temporal depen- R S T TR
dencies, so RNNs are sometimes replaced with LSTMs in MT : Bottom
networks, because they may succeed better in this setting. i Layer

f N S i
N U s B

Figure 1: LSTM Figure 2: Bidirectional Encoder

In Figure 1, the model reads an input sentence “AB” and 21.4 Deep Bidirectional Encod
produces “WXY” as the output sentence. The model stops o eep Didirectional Bucoder

making predictions after outputting the end-of-sentence (EOS) This is a variant of a bidirectional encoder in which the
token. output of every layer is summed up prior feeding to the next

layer.
2.1.3 Bidirectional Encoder
A bidirectional encoder [30] is based on the idea that the
output at any time instant may not only depend on past
data but also on future data. For example, if we are given a
task to predict a missing word in a sentence, we read what is
written both to the left and to the right of the missing word,
to get the context. Using this idea, the LSTM is tweaked to
connect two hidden layers of opposite directions to the same
output. This tweaked version of LSTM is called a Bidirec- D T N :
tional LSTM (Bi-LSTM). g :
Bi-LSTMs were introduced [23] to increase the amount of :
input information available to the network. Unlike LSTMs, NG
Bi-LSTMs have access to the future input from the current
state without need for time delays. Bi-LSTM is especially
useful when the context of the input is needed. Bi-LSTMs
are also used [30] as bidirectional encoders. : :
In MT for some language pairs, information required to [ LSTM(F) ] [ LSTM(B) ] —
translate certain words of the source side can appear on ei- : :
ther side of the target word; for certain language pairs it can
even be distributed. It makes sense to use Bi-LSTM in this
scenario, because we need the best context for translation.

Bottom
Layer

Figure 3: Deep Bidirectional Encoder
Figure 2 details our use of Bi-LSTMs. Bi-LSTMs are used
only in the bottom layer. The encoder in the bottom layer

consists of two independent encoders, the one labelled LSTM(F) From Figure 3, we can see that concatenated output from
encoding a normal sequence, and the LSTM(B) encoding the the bottom LSTM(F) and LSTM(B) is sent again to LSTM(F)
sequence in the reverse direction. The outputs from both and LSTM(B), which encode them again in the forward and
these layers are concatenated and sent to the next layer la- reverse directions respectively, X is the input. This makes

beled LSTM. it a deep bidirectional encoder.
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2.2 Residual Connections

There is plenty of theoretical and empirical evidence to sug-
gest that the depth of neural networks is a crucial ingre-
dient for their success. However as the depth of a network
increases, it becomes more and more difficult to train, due
to vanishing and exploding gradients [21]. This problem has
been addressed in the past [10] using the idea of modeling
differences between an intermediate layer’s output and the
targets. These are called residual connections.

With residual connections, the input of a layer is added
element-wise to the output before feeding to the next layer.

Bottom
Layer

Figure 4: Residual Connections

In Figure 4, the output of LSTM1 is added to input X
and sent as an input to LSTM2. Residual connections are
known to greatly improve the gradient flow in the backward
pass, which allows us to train very deep networks.

2.3 Bridges

A bridge is an additional layer between an encoder and de-
coder that defines how information is passed from encoder
to decoder. Instead of just copying the encoder states to the
decoder, encoder states can be passed through a dense layer.
To extend this further, it can also use non-linearity in the
processing of state information.

2.4 Attention Mechanism

Even though LSTMs are used to deal with the problem of
long term dependencies, they do not solve the problem com-
pletely solved by them, because the model can still suffer
from failures in long sentence translation due to its inca-
pability in capturing long term dependencies. This is largely
due to the fact that the encoder of this basic approach needs
to compress a whole source sentence into a single vector.
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We use an attention mechanism [17] to solve this prob-
lem. The basic idea of attention mechanisms is that instead
of encoding a sentence into a single vector, we encode each
word in the sentence into a vector [4], and reference these
vectors while decoding. Since the number of vectors avail-
able while decoding is equivalent to the number of words in
the sentence, long sentences have many vectors and short
sentences have few vectors. This makes it feasible to rep-
resent sentences in an efficient way, avoiding the problems
arising because of the inefficient representation if we encode
the whole sentence by a single vector.

We now encode each word in the sentence by passing it
into an RNN in both directions. The output from both the
directions is concatenated. The notations used below are
from [17]

b
hjo= B e

(f)
Here hj

both forward and backward directions respectively.

and h;b) are outputs of a word from an RNN in

These vectors are concatenated into a single matrix for all
the words.

HE) = concaticol(h(lF).... hg))

Every column in the matrix represents one word. This ma-
trix is of variable number of columns but the decoder accepts
a vector of fixed dimension while decoding to get the context.
So that implies context vector should be of fixed length. So
we multiply this matrix with the attention vector.

Ct = HFOét

HF is the matrix, c¢ is the context vector and «z is the
attention vector.

The basic idea behind the attention vector is that it in-
dicates how much we are “focusing” on a particular source
word at a particular instant of time. The larger the value of
at, the more impact a word has when predicting the next
word in the output sentence.

To calculate the attention vector, we first calculate atten-
tion scores. These attention scores can be computed with an
arbitrary function that takes two vectors as inputs, and out-
puts a score between 0 and 1 indicating how much to focus

on this particular input word encoding hE.F) at the time step
(e)
hy”.
We then normalize this to get the actual attention vector
itself by taking a softmax over the scores.

ar = softmax(at)
This attention vector is then used to weight the encoded

representation H F %o create a context vector ¢t for the cur-
rent time step.
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We calculate attention scores using the following formulae.
Here hs is source hidden state and h is target state.

exp(score(ht, hs))
> exp(score(ht, hs))

ai(s) =

score(hyt, Es) = h;Waﬁs

These context vectors are used while decoding. They give
better translations by selectively focusing on words in the
source sentence during translation.

2.5 System Architecture

Decoder .
LSTM — Decoder

Decoder
LSTM

———» Encoder

Figure 5: Architecture

Figure 5 depicts the architecture of one of our models with
an encoder, decoder and a bridge. The encoder has two layers
in which the bottom layer has a Bi-LSTM and the other
layer has an LSTM whereas in decoder both are LSTMs. It
also depicts the residual connections where output from each

layer is added to the input before feeding it to the next layer.

Compute '17, November 16-18, 2017, Bhopal, India

3 EXPERIMENTS

We applied the methods described above to the MT task
with Indian languages and report the accuracy of these meth-
ods with some sample translations in Section 6.

3.1 Setup

A Keras [6] implementation of our basic encoder decoder
model with the configuration described in previous sections
on a Dual Core CPU with 8 GB of RAM is seen to achieve
a throughput speed of approximately 100 words per second.
This was too slow for our purposes because one epoch 5
took nearly two hours. So we parallelized our model using
a machine with an NVIDIA Geforce GTX 980 GPU. This
machine processes at a throughput speed of approximately
1600 words per second.

3.2 Dataset Details

We used data obtained on request from the Indian Language
Technology Proliferation & Deployment Centre (TDIL-DC).
TDIL-DC has linguistic data for different domains like Agri-
culture, Entertainment, Health and Tourism. We combined
data across all these domains to build our final parallel cor-
pusG. We allocated 70,15,15 percent of the data for training,
validation and testing respectively. The total training data
had 64000 sentences in Telugu and Hindi for training, 14184
for validation and 14000 for testing. The data was encoded
in UTF-8 format.

3.3 Data Pre-Processing

The data from each domain were not given in a single file.
They were in separate files which had to be merged. The
data had a unique id for each sentence and it was tagged
with Parts Of Speech. These had to be removed since we
required only source and target sentence. The construction
of final corpus was not easy and took time because in some
cases translations were missing as they were intermediate
versions. So it required a manual check which was very time
consuming.

3.4 Training Details

We trained this data on the models described above. We
found that shallow LSTMs were fairly easy to train as they
take less training time. We use LSTMs with 2 layers for
encoding and decoding with 500 cells at each layer and 500
dimensional word embeddings, with an input vocabulary of
50,004 and an output vocabulary of 50,004. We used softmax
over 50,004 words at each output.

We build a deeper network by using LSTMs with 4 layers.
Instead of SGD [18] we also experimented with Adagrad [7]
with a learning rate of 0.1. We used Adagrad because sparse
features can be very useful and Adagrad makes it such that

5An epoch is defined as a single pass through your entire training set
while training a machine learning model.

SA parallel corpus is a corpus that contains a collection of original
texts in source language and their translations into one or many target
languages.
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features that are more sparse in the data have a higher learn-
ing rate which translates into a larger update for that fea-
ture.

We replace LSTM with Bi-LSTM and also experimented
with Deep Bi-LSTM. We also add residual connections and
attention mechanism. We also add a dense layer which acts
like a bridge between encoder and decoder and compared it's
performance with other methods.

We use Keras [6] with Tensor Flow [2] as the backend for
basic encoder and decoder model. We used OpenNMT [13]
for Bi-LSTM, Residual Connections and Attention Mecha-
nism. Evaluation of all these models is tabulated in the re-
sults section below.

4 EVALUATION METRICS

We evaluate the different experiments using automatic eval-
uation metrics such as UNK Count, METEOR, F-Measure,
and BLEU.

4.1 BLEU Score

The BLEU score [20] is a metric calculated for translated sen-
tences in comparison with human generated reference trans-
lations. It computes the n-gram precision with respect to the
reference translation, but does not take grammatical correct-
ness into account. A Brevity Penalty is added to account for
shorter translations. The BLEU score metric does poorly if
used to judge individual translated sentences, as it is de-
signed to approximate human judgment at corpus level. The
BLEU score is formally a number between 0 and 1, but is
usually shown as a percentage score, by multiplying by 100.
The higher the value, the better the translation. The BLEU
score is one of our evaluation methods, and it is widely used
in the MT community.

Therefore, we chose BLEU as a primary evaluation met-
ric. Our results for various experiments are tabulated in Sec-
tion 6. The code used for the calculation of BLEU scores can
be found online " .

4.2 UNK Count

Out-of-vocabulary (OOV) words are usually represented by
Unknown Word (UNK) in our machine translated output.
The translated sentences are usually said to be better if there
are fewer UNK words in the translated output.

4.3 WER

Word Error Rate (WER) [3] is a metric used for automatic
evaluation of MT system. It compares human translated out-
put to machine translated output. The lower the WER, the
better the translation. The code used for the calculation of
Word Error Rate can be found online 8.

Thttps://github.com/moses-smt/mosesdecoder/blob/master /scripts/
generic/multi-bleu.perl
8https://github.com/zszyellow/WER— in-pytflohon

Karthik Revanuru, Kaushik Turlapaty, and Shrisha Rao

4.4 F-Measure

F-measure [5] is the harmonic mean of precision and recall.
Precision is a measure of exactness or quality whereas re-
call is a measure of completeness and quantity. The higher
the F-measure, better is the translation. The code used for

calculating the F-Measure can be found online 9,

4.5 METEOR

METEOR [15] is based on harmonic mean of unigram pre-
cision and recall. This seeks good correlation with human
translated output at sentence level whereas BLEU seeks
good correlation at corpus level. The higher the METEOR
value, better the translation. The nlp-metrics package (op.
cit.) has been used for the calculation of METEOR values.

5 RESULTS

5.1 Sample Translations
Telugu to Hindi

(1) Telugu: o8’ - BE - 2,535 Dowsiore - SAS A% BBt 8o
&3 FBrom - HBE°ADH &B.

Hindi: "$AfF @16 & tdF IR §F - offF7 & 3R aur
gl 3R & WEr B FAE AT

(2) Telugu: &5 S°aHé) 5D HT° @I EI°0° o0 WO .

gindtwrm%ﬁ%svwaﬁ’wm’m
|

(3) Telugu: SomrEu), - SL0FHer Toeul ANCHY) - EX&> &THo0.

Hindi: deNdrer & IRT 3R IR et oft € |

From the above translations it can be inferred that the transla-
tions are fairly good but there seems to be a problem with trans-
lation of nouns. These translations may be handy for day to day
tasks but may need improvement for business purposes.

Tamil to Hindi
(1) Tamil: ST NGMOEUTHeMN6T HeVEMISHES LOHMILD
SIQUTSHEMET LUTHISTEHGLD QUTMILIL FEPSHD gJHmis-
Qameiong (FLILSHES Q& ST SMFEUIDTGLD

Hindi: 3P HRUT IF ¢ 6 LG - A0 &S & fow
RFAER T@ATST| <unk> 3R 3AH 8T S & fow Feer
A ¥ |

Tamil: USHFleNSWITONTT OLETHUSHWITES Q([HES -
(HLOLEUSILEMBD L6TTTEL HEMEHGLD S60TEB)IMLILI (&-
LHDBSEEGL 2(SS SHITNL 2 a|d Cs-
OeULILBHETNG -

Hindi: UI6R AR UIPR Jef aa & A |, afea e
J 30U gl B T U dTdl B 1Y AR @ oY Tk ATy
oot foram |

9https://github.com/harpribot/nlp-metrics

—
)
~
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(3) Tamil: SSHWITUSWIL QUTHL ST CHMEUWLITEHS

SM60T QBSAMG SIGHEVT6L UMDEHEMS LIUIETITLD @is-

SULGEDS .

Hindi: 59 YR &7 @A OOt a7 @ g ar § 598 S
1 I ganfora s & |

Konkani to Hindi

(1) Konkani: £ Tshgd TU ITalTel T ok deheiihal faera
31T BICIaThdT MTaRGRT Ra Ree smar Aflredr
el i@ & .
Hindi: I§ UHcH Agad &I a9 & ToF ATFEer &r awrerr ar
oo 3R & FgE & TT i B I 3R T & THIRT
S 3R o A <unk>H el f ggd 9 IR R
QR & - T § epet prer F el o |

(2) Konkani: SHaRTear 31T BICmbrear 3nfaesrrar wroft ger
g 8 I a URON T - gAR ST Al
urafaedh .

Hindi: 3=F &¢ Ydual & A& 31 alll & TR & 47
i frE U AT @Y AL & HepaT |

(3) Konkani: £ GaRdT ITABRT A & GIATT=AT HTTaRpRTAT
AT GET I ThH AAME TGdes QA .

Hindi: 38 UHR , HaX & 9wr &1 47 o agad @ ofr

PRI A M <unk> T & , BT <unk> J 38 T
Ul fEeam Ay IR R |

5.2 Comparison Of Various Models

In this section we compare various models applied on various
datasets based on training time, BLEU score and other evalua-
tion metrics.

5.2.1 Using BLEU Score
Table 1: Comparison of different models using BLEU score

Model BLEU Score
2 Layer LSTM + SGD 12.67
4 Layer LSTM + SGD 4.94
2 Layer (Bi-dir) LSTM +SGD + Res + Attention 13.89
4 layers (Bi-dir) LSTM +SGD+ Res + Attention 11.55
4 layers (Bi-dir) LSTM +SGD+ Res + Atten- 14.16
tion +

Bridge (non-linear)

4 layers (Bi-dir) LSTM(Concat)+SGD + Res + 13.57
Attention

4 layers (deep Bi-dir) LSTM +SGD+Res + 8.46
Attention

4 layers (Bi-dir) LSTM + AdaGrad+ Res + 0.65
Attention

It has been suggested in earlier works that deeper networks have
better accuracy compared to shallow networks. But we can see
from Table 1 that BLEU score has gone down when we have made
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our network deeper, i.e., when we increased the number of layers
in encoder and decoder from 2 to 4. This is due to vanishing and
exponential gradients—so simply stacking layers does not work
beyond a point. Residual connections are used to solve this prob-
lem. Even with residual connections and attention mechanism,
there is a slight dip in the accuracy when the number of layers
are increased. This can be attributed to limited training data. It
can also be seen that the BLEU score has decreased when the
optimization method is changed from SGD to Adagrad. Ideally,
Adagrad should give better accuracy because it learns sparse fea-
tures also, but here it does not. The reason is again the limited
training data.

Adding Bi-LSTM increased the accuracy whereas Deep Bi-LSTM
decreased the accuracy. This is again because of limited data. In-
terestingly residual connections on a shallow network increased
the accuracy and performed better compared to a deeper network
by a margin of two BLEU score. Four layer Bi-directional LSTM
with residual connections, attention mechanism and a non linear
bridge between encoder and decoder gives the best accuracy.

5.2.2 Based On Training Time

We compared our models based on training time which is tab-
ulated below for Telugu - Hindi translation.

Table 2: Comparison of different models based on training time

Configuration Start Time End Time Time taken
2 layers (Bi-dir) LSTM 15:54:56 18:23:42 2:28:46
+
SGD+ Res + Atten-
tion
2 layers (Bi-dir) LSTM 15:54:56 20:33:59 4:39:03

+
SGD+ Res +Attention

If we correlate the above results and results from Table 1, we
can see that there is no big difference in accuracy when we move
from a two-layer to a four-layer network, whereas the training
time almost increased by two hours. So we can conclude that
good accuracy can be achieved even with shallow networks and a
lot of training time can be saved, in turn also reducing resource
utilization. If this trend can be extended further, it may open up
the possibility of training a neural network for translation even
on embedded devices.

5.3 Extension To Several Indian Language Pairs

We also experimented with our methods on a few other language
data sets and evaluated them.

5.3.1 Konkani-Hindi

The total training data had 75000 sentences in Konkani and
Hindi for training, 2000 for validation and 1000 for testing. The
data was encoded in UTF-8 format.
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Table 3: Comparison of different models using BLEU score on
Konkani-Hindi language pairs

Model BLEU Score
2 Layer LSTM + SGD 24.07
4 Layer LSTM + SGD 17.01
2 Layer (Bi-dir) LSTM +SGD + Res + Attention 24.35
4 layers (Bi-dir) LSTM +SGD+ Res + Attention 25.14
4 layers (Bi-dir) LSTM +SGD+ Res + Atten- 25.39
tion +

Bridge (non-linear)

4 layers (Bi-dir) LSTM(Concat)+SGD + Res + 25.25
Attention

4 layers (deep Bi-dir) LSTM +SGD+Res + 16.56
Attention

4 layers (Bi-dir) LSTM + AdaGrad+ Res + 0
Attention

From Table 3, we observe that even with Konkani-Hindi same
trends repeat, the only difference being that unlike Telugu-Hindi,
the four-layer model with residual connections and attention mech-
anism performs slightly better compared to the two-layer model.
In Bi-LSTM, concat works slightly better compared to sum. A
four-layer Bi-directional LSTM with residual connections, atten-
tion mechanism and a non-linear bridge gives the best BLEU score
and AdaGrad gives the lowest BLEU score.

5.3.2 Gujarati-Hindi

The total training data had 80000 sentences in Telugu and
Hindi for training, 2000 for validation and 1000 for testing. The
data was encoded in UTF-8 format.

Table 4: Comparison of different models using BLEU score on
Gujarati-Hindi language pairs

Karthik Revanuru, Kaushik Turlapaty, and Shrisha Rao

Table 5: Comparison of different models using BLEU score on
Punjabi- Hindi language pairs

Model BLEU Score
2 Layer LSTM + SGD 43.75
4 Layer LSTM + SGD 31.56
2 Layer (Bi-dir) LSTM +SGD + Res + Attention 45.97
4 layers (Bi-dir) LSTM +SGD+ Res + Attention 46.47
4 layers (Bi-dir) LSTM +SGD+ Res + Atten- 45.48
tion + Bridge (non-linear)

4 layers (Bi-dir) LSTM(Concat)+SGD + Res + 41.14
Attention

4 layers (deep Bi-dir) LSTM +SGD+Res + At- 0.89
tention

4 layers (Bi-dir) LSTM + AdaGrad+ Res + At- 3.11
tention

From Table 5, we can observe that Punjabi-Hindi behaves sim-
ilar to Gujarati-Hindi.

We evaluated our methods on metrics other than BLEU and the
details are tabulated below. Results in the following table are ob-
tained using a 2 layer Bi-LSTM with SGD, Residual Connections
and Attention Mechanism.

Table 6: Comparison of different language pairs using different
evaluation metrics.

Language Pair BLEU UNK WER(%) F-Measure METEOR
Punjabi-Hindi  45.97 631 37.280 0.819 0.431
Gujarati-Hindi ~ 35.26 986 49.170 0.755 0.367
Konkani-Hindi  24.35 574 52.883 0.784 0.367
Tamil-Hindi 7.56 ey 87.276 0.702 0.309
Urdu-Hindi 22.47 0 72.848 0.730 0.347

Model BLEU Score
2 Layer LSTM + SGD 34.14
4 Layer LSTM + SGD 30.67
2 Layer (Bi-dir) LSTM +SGD + Res + Attention 35.26
4 layers (Bi-dir) LSTM +SGD+ Res + Attention 35.69
4 layers (Bi-dir) LSTM +SGD+ Res + Atten- 35.18
tion +

Bridge (non-linear)

4 layers (Bi-dir) LSTM(Concat)+SGD + Res + 33.91
Attention

4 layers (deep Bi-dir) LSTM +SGD+Res + 32.62
Attention

4 layers (Bi-dir) LSTM + AdaGrad+ Res + 0
Attention

The above table shows that the language pair with high ME-
TEOR score also has high BLEU score and the least word error
rate, which implies that the translation model is good overall for
that language pair.

5.4 Comparison With Google Translate

To determine the effectiveness of our translations we translated
our test data on Google Translate and calculated BLEU scores for
those and compared it with our scores which are tabulated below.

Table 7: Comparison of our model with Google translate

Language Pair Our Best Model Google Translate

From Table 4, we can observe that Gujarati-Hindi has behavior
similar to Konkani-Hindi, the only difference being that a slightly
higher BLEU score is achieved without bridge than with one. It is
noteworthy that using a bridge gives the greatest accuracy previ-
ously, in a four-layer model with Bi directional encoder, residual
mechanism and attention mechanism.

5.3.3 Punjabi-Hindi

We allocated 70,15,15 percent for training, validation and test-
ing. The total training data had 55000 sentences in Telugu and
Hindi for training, 15088 for validation and 14802 for testing. The
data was encoded in UTF-8 format.

Punjabi-Hindi 46.47 17.46
Gujarati-Hindi 35.69 4.87
Urdu-Hindi 22.47 5.79
Tamil-Hindi 7.56 2.65

Note: Values based on TDIL-DC dataset, Google Translate ac-
cessed on 15t June 2017

It is evident from the table above that our best models have out-
performed Google Translate consistently. Since we do not know
the data on which Google has trained its model, we are unable
to come up with an exact reason why our best models are doing
better. We trained our model on sentences relevant to the agricul-
ture, entertainment, health and tourism domains. In these, our
models have consistently outperformed Google Translate.
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6 CONCLUSION

In this work we have applied neural machine translation tech-
niques on several Indian Language Pairs and evaluated them on
some automatic evaluation metrics. We were surprised with the
accuracy with which our model was translating given that we had
limited data and a shallow network of two layers. It was even
more surprising that our model for Urdu-Hindi, Punjabi-Hindi
and Gujarati-Hindi outperformed Google Translate with a margin
of over 17, 29 and 30 BLEU score respectively. Most importantly,
we demonstrated that good translation accuracy can be achieved
even with simple approaches using shallow networks on some In-
dian language pairs.

With the recent success of Generative Adversarial Networks we
can experiment GAN’s [28] on translation for Indian Languages.
We can also try using Convolutional Neural Networks since con-
volutional approach allows us to discover compositional structure
in the sequences more easily since representations are built hierar-
chically [8]. Since they can work at faster speeds and have better
accuracies they can help in our idea of having a real time transla-
tor with human level translation quality.

We can unleash the potential of this MT system by developing
some cloud based applications which gives us the luxury of get-
ting real-time translations in about a fraction of the cost of hiring
a translator. Going further, if we can optimize our architecture,
our models can be run on embedded devices which opens up new
possibilities and gives us the freedom for offline translation. This
is particularly useful in countries like India where internet pene-
tration is low especially in rural areas.

We can extend this to a real time speech to speech translator,
i.e., what ever we speak in one language gets translated into tar-
get language and it would be read aloud as speech. This would be
particularly useful in customer service as majority of population
in India is not well versed in English and since customer service
and satisfaction are on top priority for many companies they can
use this type of speech to speech translation services to serve their
customer base. Zero shot translation [12] comes handy to create a
single translation system which can translate multiple languages.

Digital literacy in India is low, one of the reasons for this is lan-
guage barrier. Using our work, applications can be developed to
translate content on web. This will reduce the language barrier
and would also help the Government with Digital India initiative
by bringing more people on to digital platforms.
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